Skip to contents

This function calculates the local spatial runs tests for all localizations.

Usage

local.sp.runs.test(formula = NULL, data = NULL, fx = NULL,
distr = "asymptotic", listw = listw, alternative = "two.sided" , nsim = NULL,
control = list())

Arguments

formula

An (optional) formula with the factor included in data

data

An (optional) data frame or a sf object containing the variable to testing for.

fx

An (optional) factor of observations with the same length as the neighbors list in listw

distr

a character string specifying the distribution "asymptotic" (default) or "bootstrap"

listw

A neighbourhood list (an object type knn or nb) or a W matrix that indicates the order of the elements in each $m_i-environment$ (for example of inverse distance). To calculate the number of runs in each $m_i-environment$, an order must be established, for example from the nearest neighbour to the furthest one.

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

nsim

Default value is NULL to obtain the asymptotic version of the local test. For the bootstrap version nsim is the number of permutations to obtain the pseudo-value.

control

Optional argument. See Control Argument section.

Value

The output is an object of the class localsrq

local.SRQ A matrix with

runs.inumber of runs in the localization 'i'.
E.iexpectation of local runs statistic in the localization 'i'.
Sd.istandard deviate of local runs statistic in the localization 'i'.
z.valuestandard value of local runs statistic (only for asymptotic version).
p.valuep-value of local local runs statistic (only for asymptotic version).
zseudo.valuestandard value of local runs statistic (only for boots version).
pseudo.valuep-value of local runs statistic (only for boots version).

MeanNeig Mean of run.i
MaxNeig Maximum of run.i
listw the object listw
alternative a character string describing the alternative hypothesis

Details

The object listw can be the class:

  • knn: Objects of the class knn that consider the neighbours in order of proximity.

  • nb: If the neighbours are obtained from an sf object, the code internally will call the function nb2nb_order it will order them in order of proximity of the centroids.

  • matrix: If a object of matrix class based in the inverse of the distance in introduced as argument, the function nb2nb_order will also be called internally to transform the object the class matrix to a matrix of the class nb with ordered neighbours.

Control arguments

seedinitNumerical value for the seed in boot version. Default value seedinit = 123

See also

Author

Fernando Lópezfernando.lopez@upct.es
Román Mínguezroman.minguez@uclm.es
Antonio Páezpaezha@gmail.com
Manuel Ruizmanuel.ruiz@upct.es

@references

  • Ruiz, M., López, F., and Páez, A. (2021). A test for global and local homogeneity of categorical data based on spatial runs. Working paper.

Examples


# Case 1: Local spatial runs test based on knn
N <- 100
cx <- runif(N)
cy <- runif(N)
x <- cbind(cx,cy)
listw <- spdep::knearneigh(cbind(cx,cy), k = 10)
p <- c(1/6,3/6,2/6)
rho <- 0.5
fx <- dgp.spq(p = p, listw = listw, rho = rho)

# Asymtotic version
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "less")
print(lsrq)
#>     runs.i      E.i   Std.i    z.value     p.value
#> 1        5 7.183838 1.59988 -1.3650011 0.086126348
#> 2        8 7.183838 1.59988  0.5101392 0.695023022
#> 3        7 7.183838 1.59988 -0.1149076 0.454259185
#> 4        5 7.183838 1.59988 -1.3650011 0.086126348
#> 5        9 7.183838 1.59988  1.1351860 0.871851293
#> 6        7 7.183838 1.59988 -0.1149076 0.454259185
#> 7        9 7.183838 1.59988  1.1351860 0.871851293
#> 8        8 7.183838 1.59988  0.5101392 0.695023022
#> 9        9 7.183838 1.59988  1.1351860 0.871851293
#> 10       6 7.183838 1.59988 -0.7399544 0.229663845
#> 11       7 7.183838 1.59988 -0.1149076 0.454259185
#> 12       5 7.183838 1.59988 -1.3650011 0.086126348
#> 13       6 7.183838 1.59988 -0.7399544 0.229663845
#> 14       7 7.183838 1.59988 -0.1149076 0.454259185
#> 15       7 7.183838 1.59988 -0.1149076 0.454259185
#> 16       8 7.183838 1.59988  0.5101392 0.695023022
#> 17       6 7.183838 1.59988 -0.7399544 0.229663845
#> 18       7 7.183838 1.59988 -0.1149076 0.454259185
#> 19       6 7.183838 1.59988 -0.7399544 0.229663845
#> 20       7 7.183838 1.59988 -0.1149076 0.454259185
#> 21       5 7.183838 1.59988 -1.3650011 0.086126348
#> 22       6 7.183838 1.59988 -0.7399544 0.229663845
#> 23       5 7.183838 1.59988 -1.3650011 0.086126348
#> 24       8 7.183838 1.59988  0.5101392 0.695023022
#> 25       5 7.183838 1.59988 -1.3650011 0.086126348
#> 26       4 7.183838 1.59988 -1.9900479 0.023292830
#> 27       8 7.183838 1.59988  0.5101392 0.695023022
#> 28       4 7.183838 1.59988 -1.9900479 0.023292830
#> 29       8 7.183838 1.59988  0.5101392 0.695023022
#> 30       6 7.183838 1.59988 -0.7399544 0.229663845
#> 31       8 7.183838 1.59988  0.5101392 0.695023022
#> 32       9 7.183838 1.59988  1.1351860 0.871851293
#> 33       6 7.183838 1.59988 -0.7399544 0.229663845
#> 34       6 7.183838 1.59988 -0.7399544 0.229663845
#> 35       9 7.183838 1.59988  1.1351860 0.871851293
#> 36       7 7.183838 1.59988 -0.1149076 0.454259185
#> 37       6 7.183838 1.59988 -0.7399544 0.229663845
#> 38       8 7.183838 1.59988  0.5101392 0.695023022
#> 39       6 7.183838 1.59988 -0.7399544 0.229663845
#> 40       8 7.183838 1.59988  0.5101392 0.695023022
#> 41       8 7.183838 1.59988  0.5101392 0.695023022
#> 42       7 7.183838 1.59988 -0.1149076 0.454259185
#> 43       7 7.183838 1.59988 -0.1149076 0.454259185
#> 44       9 7.183838 1.59988  1.1351860 0.871851293
#> 45       7 7.183838 1.59988 -0.1149076 0.454259185
#> 46       9 7.183838 1.59988  1.1351860 0.871851293
#> 47       6 7.183838 1.59988 -0.7399544 0.229663845
#> 48       6 7.183838 1.59988 -0.7399544 0.229663845
#> 49       6 7.183838 1.59988 -0.7399544 0.229663845
#> 50       7 7.183838 1.59988 -0.1149076 0.454259185
#> 51       6 7.183838 1.59988 -0.7399544 0.229663845
#> 52       8 7.183838 1.59988  0.5101392 0.695023022
#> 53       9 7.183838 1.59988  1.1351860 0.871851293
#> 54       6 7.183838 1.59988 -0.7399544 0.229663845
#> 55       5 7.183838 1.59988 -1.3650011 0.086126348
#> 56       8 7.183838 1.59988  0.5101392 0.695023022
#> 57       5 7.183838 1.59988 -1.3650011 0.086126348
#> 58       7 7.183838 1.59988 -0.1149076 0.454259185
#> 59       8 7.183838 1.59988  0.5101392 0.695023022
#> 60      10 7.183838 1.59988  1.7602327 0.960815822
#> 61       9 7.183838 1.59988  1.1351860 0.871851293
#> 62       9 7.183838 1.59988  1.1351860 0.871851293
#> 63       9 7.183838 1.59988  1.1351860 0.871851293
#> 64       6 7.183838 1.59988 -0.7399544 0.229663845
#> 65       5 7.183838 1.59988 -1.3650011 0.086126348
#> 66       5 7.183838 1.59988 -1.3650011 0.086126348
#> 67       8 7.183838 1.59988  0.5101392 0.695023022
#> 68       6 7.183838 1.59988 -0.7399544 0.229663845
#> 69       6 7.183838 1.59988 -0.7399544 0.229663845
#> 70       8 7.183838 1.59988  0.5101392 0.695023022
#> 71       5 7.183838 1.59988 -1.3650011 0.086126348
#> 72       6 7.183838 1.59988 -0.7399544 0.229663845
#> 73       5 7.183838 1.59988 -1.3650011 0.086126348
#> 74       3 7.183838 1.59988 -2.6150947 0.004460136
#> 75       5 7.183838 1.59988 -1.3650011 0.086126348
#> 76       7 7.183838 1.59988 -0.1149076 0.454259185
#> 77       7 7.183838 1.59988 -0.1149076 0.454259185
#> 78       4 7.183838 1.59988 -1.9900479 0.023292830
#> 79       6 7.183838 1.59988 -0.7399544 0.229663845
#> 80       9 7.183838 1.59988  1.1351860 0.871851293
#> 81       7 7.183838 1.59988 -0.1149076 0.454259185
#> 82       8 7.183838 1.59988  0.5101392 0.695023022
#> 83       7 7.183838 1.59988 -0.1149076 0.454259185
#> 84       6 7.183838 1.59988 -0.7399544 0.229663845
#> 85       8 7.183838 1.59988  0.5101392 0.695023022
#> 86       8 7.183838 1.59988  0.5101392 0.695023022
#> 87       7 7.183838 1.59988 -0.1149076 0.454259185
#> 88       5 7.183838 1.59988 -1.3650011 0.086126348
#> 89       7 7.183838 1.59988 -0.1149076 0.454259185
#> 90       9 7.183838 1.59988  1.1351860 0.871851293
#> 91       7 7.183838 1.59988 -0.1149076 0.454259185
#> 92       9 7.183838 1.59988  1.1351860 0.871851293
#> 93       6 7.183838 1.59988 -0.7399544 0.229663845
#> 94       5 7.183838 1.59988 -1.3650011 0.086126348
#> 95       7 7.183838 1.59988 -0.1149076 0.454259185
#> 96       3 7.183838 1.59988 -2.6150947 0.004460136
#> 97       5 7.183838 1.59988 -1.3650011 0.086126348
#> 98       6 7.183838 1.59988 -0.7399544 0.229663845
#> 99       9 7.183838 1.59988  1.1351860 0.871851293
#> 100      6 7.183838 1.59988 -0.7399544 0.229663845
plot(lsrq, sig = 0.05)

# Asymtotic version
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "two.sided",
                           distr ="bootstrap", nsim = 399)
print(lsrq)
#>     SRQ     EP.i    SdP.i zseudo.value pseudo.value
#> 1     5 7.162907 1.658245  -1.30433517  0.192119328
#> 2     8 7.185464 1.527204   0.53335149  0.593790291
#> 3     7 7.167920 1.656227  -0.10138693  0.919243312
#> 4     5 7.223058 1.582844  -1.40447003  0.160178929
#> 5     9 7.152882 1.589597   1.16200361  0.245233999
#> 6     7 7.210526 1.558181  -0.13511028  0.892524684
#> 7     9 7.343358 1.583489   1.04619720  0.295469994
#> 8     8 7.085213 1.634354   0.55972394  0.575667750
#> 9     9 7.290727 1.562979   1.09359950  0.274130670
#> 10    6 7.082707 1.624460  -0.66650248  0.505089982
#> 11    7 7.370927 1.555589  -0.23844820  0.811533490
#> 12    5 7.115288 1.560100  -1.35586724  0.175141413
#> 13    6 7.105263 1.570439  -0.70379246  0.481562027
#> 14    7 7.320802 1.603183  -0.20010323  0.841399849
#> 15    7 7.230576 1.566601  -0.14718262  0.882987876
#> 16    8 7.135338 1.560096   0.55423627  0.579417162
#> 17    6 7.285714 1.626901  -0.79028449  0.429361642
#> 18    7 7.298246 1.533142  -0.19453228  0.845759125
#> 19    6 7.190476 1.598935  -0.74454330  0.456547856
#> 20    7 7.125313 1.481659  -0.08457635  0.932598201
#> 21    5 7.205514 1.620494  -1.36101353  0.173509414
#> 22    6 7.270677 1.596767  -0.79578079  0.426159461
#> 23    5 7.218045 1.480213  -1.49846354  0.134012859
#> 24    8 7.230576 1.556948   0.49418698  0.621174132
#> 25    5 7.255639 1.599250  -1.41043572  0.158411063
#> 26    4 7.225564 1.637883  -1.96934914  0.048913011
#> 27    8 7.165414 1.585964   0.52623278  0.598726484
#> 28    4 7.085213 1.470910  -2.09748664  0.035950519
#> 29    8 7.208020 1.560935   0.50737532  0.611891501
#> 30    6 7.253133 1.614502  -0.77617293  0.437646886
#> 31    8 7.052632 1.569091   0.60376888  0.545997309
#> 32    9 7.092732 1.559191   1.22324188  0.221238352
#> 33    6 7.228070 1.635232  -0.75100666  0.452648650
#> 34    6 7.080201 1.537989  -0.70234593  0.482463459
#> 35    9 7.135338 1.561705   1.19399061  0.232481641
#> 36    7 7.197995 1.669531  -0.11859320  0.905597652
#> 37    6 7.102757 1.566601  -0.70391689  0.481484530
#> 38    8 7.097744 1.685877   0.53518478  0.592522091
#> 39    6 7.348371 1.604466  -0.84038585  0.400692078
#> 40    8 7.180451 1.607932   0.50969118  0.610267833
#> 41    8 7.270677 1.556932   0.46843618  0.639472702
#> 42    7 7.095238 1.585408  -0.06007165  0.952098573
#> 43    7 7.172932 1.626622  -0.10631379  0.915333393
#> 44    9 7.092732 1.651533   1.15484739  0.248152928
#> 45    7 7.305764 1.624790  -0.18818707  0.850730009
#> 46    9 7.205514 1.623592   1.10525709  0.269048204
#> 47    6 7.210526 1.554953  -0.77849704  0.436276051
#> 48    6 7.225564 1.674295  -0.73198795  0.464175925
#> 49    6 7.240602 1.626494  -0.76274578  0.445615025
#> 50    7 7.243108 1.567107  -0.15513153  0.876717623
#> 51    6 7.140351 1.630535  -0.69937225  0.484319423
#> 52    8 7.328321 1.518719   0.44226693  0.658296060
#> 53    9 7.268170 1.538702   1.12551364  0.260371439
#> 54    6 7.210526 1.650579  -0.73339489  0.463317614
#> 55    5 7.012531 1.482678  -1.35736207  0.174666194
#> 56    8 7.315789 1.545142   0.44281403  0.657900257
#> 57    5 7.185464 1.641390  -1.33147156  0.183033896
#> 58    7 7.328321 1.580336  -0.20775378  0.835421224
#> 59    8 7.145363 1.570431   0.54420512  0.586300332
#> 60   10 7.147870 1.604231   1.77788010  0.075423549
#> 61    9 7.187970 1.620303   1.11832776  0.263427036
#> 62    9 7.127820 1.580727   1.18437969  0.236262795
#> 63    9 7.182957 1.534891   1.18382534  0.236482209
#> 64    6 7.117794 1.516628  -0.73702623  0.461106398
#> 65    5 7.228070 1.578949  -1.41110980  0.158212241
#> 66    5 7.195489 1.675085  -1.31067314  0.189968216
#> 67    8 7.273183 1.628286   0.44636949  0.655330368
#> 68    6 7.228070 1.532107  -0.80155659  0.422809500
#> 69    6 7.137845 1.645321  -0.69156383  0.489211284
#> 70    8 7.155388 1.564658   0.53980574  0.589331007
#> 71    5 7.105263 1.523335  -1.38200914  0.166968896
#> 72    6 7.285714 1.516599  -0.84776166  0.396570717
#> 73    5 7.110276 1.541020  -1.36940167  0.170873754
#> 74    3 7.350877 1.609392  -2.70342855  0.006862820
#> 75    5 7.067669 1.555645  -1.32913916  0.183802062
#> 76    7 7.275689 1.628634  -0.16927638  0.865579250
#> 77    7 7.218045 1.593036  -0.13687393  0.891130445
#> 78    4 7.253133 1.602004  -2.03066492  0.042288997
#> 79    6 7.122807 1.581125  -0.71013177  0.477622427
#> 80    9 7.185464 1.583739   1.14572914  0.251907243
#> 81    7 7.077694 1.593479  -0.04875762  0.961112455
#> 82    8 7.102757 1.610882   0.55698858  0.577535230
#> 83    7 7.230576 1.624859  -0.14190547  0.887154676
#> 84    6 7.220551 1.638567  -0.74488932  0.456338631
#> 85    8 7.200501 1.544938   0.51749563  0.604810219
#> 86    8 7.338346 1.623727   0.40749089  0.683647481
#> 87    7 7.152882 1.505162  -0.10157192  0.919096470
#> 88    5 7.248120 1.646098  -1.36572694  0.172024685
#> 89    7 7.140351 1.525446  -0.09200645  0.926692917
#> 90    9 7.298246 1.568782   1.08476147  0.278027316
#> 91    7 7.328321 1.572367  -0.20880678  0.834599077
#> 92    9 7.110276 1.513049   1.24895144  0.211682834
#> 93    6 7.230576 1.542356  -0.79785505  0.424954612
#> 94    5 7.082707 1.593226  -1.30722634  0.191135852
#> 95    7 7.208020 1.648613  -0.12617881  0.899590385
#> 96    3 7.208020 1.548004  -2.71835159  0.006560808
#> 97    5 7.308271 1.597016  -1.44536507  0.148355368
#> 98    6 7.125313 1.521813  -0.73945559  0.459630395
#> 99    9 7.240602 1.550573   1.13467625  0.256510993
#> 100   6 7.165414 1.589130  -0.73336587  0.463335311
plot(lsrq, sig = 0.1)

# \donttest{
# Case 2:Fastfood example. sf (points)
data("FastFood.sf")
# sf::sf_use_s2(FALSE)
x <- sf::st_coordinates(sf::st_centroid(FastFood.sf))
listw <- spdep::knearneigh(x, k = 10)
formula <- ~ Type
lsrq <- local.sp.runs.test(formula = formula, data = FastFood.sf, listw = listw)
print(lsrq)
#>     runs.i      E.i    Std.i    z.value    p.value
#> 1        8 7.668307 1.490157  0.2225895 0.82385504
#> 2        9 7.668307 1.490157  0.8936597 0.37150400
#> 3        9 7.668307 1.490157  0.8936597 0.37150400
#> 4        8 7.668307 1.490157  0.2225895 0.82385504
#> 5       10 7.668307 1.490157  1.5647299 0.11764625
#> 6        8 7.668307 1.490157  0.2225895 0.82385504
#> 7        8 7.668307 1.490157  0.2225895 0.82385504
#> 8        7 7.668307 1.490157 -0.4484808 0.65380626
#> 9        7 7.668307 1.490157 -0.4484808 0.65380626
#> 10       7 7.668307 1.490157 -0.4484808 0.65380626
#> 11       7 7.668307 1.490157 -0.4484808 0.65380626
#> 12       8 7.668307 1.490157  0.2225895 0.82385504
#> 13       9 7.668307 1.490157  0.8936597 0.37150400
#> 14       7 7.668307 1.490157 -0.4484808 0.65380626
#> 15      10 7.668307 1.490157  1.5647299 0.11764625
#> 16       9 7.668307 1.490157  0.8936597 0.37150400
#> 17       7 7.668307 1.490157 -0.4484808 0.65380626
#> 18       9 7.668307 1.490157  0.8936597 0.37150400
#> 19      10 7.668307 1.490157  1.5647299 0.11764625
#> 20       9 7.668307 1.490157  0.8936597 0.37150400
#> 21       9 7.668307 1.490157  0.8936597 0.37150400
#> 22      10 7.668307 1.490157  1.5647299 0.11764625
#> 23       7 7.668307 1.490157 -0.4484808 0.65380626
#> 24       6 7.668307 1.490157 -1.1195510 0.26290515
#> 25       9 7.668307 1.490157  0.8936597 0.37150400
#> 26       9 7.668307 1.490157  0.8936597 0.37150400
#> 27      10 7.668307 1.490157  1.5647299 0.11764625
#> 28       8 7.668307 1.490157  0.2225895 0.82385504
#> 29       8 7.668307 1.490157  0.2225895 0.82385504
#> 30      10 7.668307 1.490157  1.5647299 0.11764625
#> 31       9 7.668307 1.490157  0.8936597 0.37150400
#> 32       8 7.668307 1.490157  0.2225895 0.82385504
#> 33       6 7.668307 1.490157 -1.1195510 0.26290515
#> 34       8 7.668307 1.490157  0.2225895 0.82385504
#> 35       8 7.668307 1.490157  0.2225895 0.82385504
#> 36       9 7.668307 1.490157  0.8936597 0.37150400
#> 37       8 7.668307 1.490157  0.2225895 0.82385504
#> 38       7 7.668307 1.490157 -0.4484808 0.65380626
#> 39       8 7.668307 1.490157  0.2225895 0.82385504
#> 40       9 7.668307 1.490157  0.8936597 0.37150400
#> 41       8 7.668307 1.490157  0.2225895 0.82385504
#> 42       9 7.668307 1.490157  0.8936597 0.37150400
#> 43       7 7.668307 1.490157 -0.4484808 0.65380626
#> 44       8 7.668307 1.490157  0.2225895 0.82385504
#> 45       8 7.668307 1.490157  0.2225895 0.82385504
#> 46       8 7.668307 1.490157  0.2225895 0.82385504
#> 47       7 7.668307 1.490157 -0.4484808 0.65380626
#> 48       6 7.668307 1.490157 -1.1195510 0.26290515
#> 49       6 7.668307 1.490157 -1.1195510 0.26290515
#> 50       8 7.668307 1.490157  0.2225895 0.82385504
#> 51       6 7.668307 1.490157 -1.1195510 0.26290515
#> 52       7 7.668307 1.490157 -0.4484808 0.65380626
#> 53       4 7.668307 1.490157 -2.4616914 0.01382836
#> 54       7 7.668307 1.490157 -0.4484808 0.65380626
#> 55       8 7.668307 1.490157  0.2225895 0.82385504
#> 56       8 7.668307 1.490157  0.2225895 0.82385504
#> 57       4 7.668307 1.490157 -2.4616914 0.01382836
#> 58       5 7.668307 1.490157 -1.7906212 0.07335410
#> 59       9 7.668307 1.490157  0.8936597 0.37150400
#> 60      11 7.668307 1.490157  2.2358001 0.02536487
#> 61       4 7.668307 1.490157 -2.4616914 0.01382836
#> 62       7 7.668307 1.490157 -0.4484808 0.65380626
#> 63       6 7.668307 1.490157 -1.1195510 0.26290515
#> 64      10 7.668307 1.490157  1.5647299 0.11764625
#> 65       9 7.668307 1.490157  0.8936597 0.37150400
#> 66       7 7.668307 1.490157 -0.4484808 0.65380626
#> 67       7 7.668307 1.490157 -0.4484808 0.65380626
#> 68       6 7.668307 1.490157 -1.1195510 0.26290515
#> 69       8 7.668307 1.490157  0.2225895 0.82385504
#> 70      10 7.668307 1.490157  1.5647299 0.11764625
#> 71       8 7.668307 1.490157  0.2225895 0.82385504
#> 72       8 7.668307 1.490157  0.2225895 0.82385504
#> 73       6 7.668307 1.490157 -1.1195510 0.26290515
#> 74       8 7.668307 1.490157  0.2225895 0.82385504
#> 75       8 7.668307 1.490157  0.2225895 0.82385504
#> 76       8 7.668307 1.490157  0.2225895 0.82385504
#> 77      10 7.668307 1.490157  1.5647299 0.11764625
#> 78       8 7.668307 1.490157  0.2225895 0.82385504
#> 79       9 7.668307 1.490157  0.8936597 0.37150400
#> 80       8 7.668307 1.490157  0.2225895 0.82385504
#> 81       8 7.668307 1.490157  0.2225895 0.82385504
#> 82       8 7.668307 1.490157  0.2225895 0.82385504
#> 83       9 7.668307 1.490157  0.8936597 0.37150400
#> 84       8 7.668307 1.490157  0.2225895 0.82385504
#> 85       9 7.668307 1.490157  0.8936597 0.37150400
#> 86      10 7.668307 1.490157  1.5647299 0.11764625
#> 87       7 7.668307 1.490157 -0.4484808 0.65380626
#> 88       9 7.668307 1.490157  0.8936597 0.37150400
#> 89       7 7.668307 1.490157 -0.4484808 0.65380626
#> 90       7 7.668307 1.490157 -0.4484808 0.65380626
#> 91       8 7.668307 1.490157  0.2225895 0.82385504
#> 92      11 7.668307 1.490157  2.2358001 0.02536487
#> 93       7 7.668307 1.490157 -0.4484808 0.65380626
#> 94       6 7.668307 1.490157 -1.1195510 0.26290515
#> 95       9 7.668307 1.490157  0.8936597 0.37150400
#> 96       8 7.668307 1.490157  0.2225895 0.82385504
#> 97       8 7.668307 1.490157  0.2225895 0.82385504
#> 98       9 7.668307 1.490157  0.8936597 0.37150400
#> 99      10 7.668307 1.490157  1.5647299 0.11764625
#> 100     10 7.668307 1.490157  1.5647299 0.11764625
#> 101      9 7.668307 1.490157  0.8936597 0.37150400
#> 102      7 7.668307 1.490157 -0.4484808 0.65380626
#> 103     10 7.668307 1.490157  1.5647299 0.11764625
#> 104     10 7.668307 1.490157  1.5647299 0.11764625
#> 105      9 7.668307 1.490157  0.8936597 0.37150400
#> 106     10 7.668307 1.490157  1.5647299 0.11764625
#> 107      7 7.668307 1.490157 -0.4484808 0.65380626
#> 108      8 7.668307 1.490157  0.2225895 0.82385504
#> 109     10 7.668307 1.490157  1.5647299 0.11764625
#> 110      7 7.668307 1.490157 -0.4484808 0.65380626
#> 111     11 7.668307 1.490157  2.2358001 0.02536487
#> 112      7 7.668307 1.490157 -0.4484808 0.65380626
#> 113      9 7.668307 1.490157  0.8936597 0.37150400
#> 114     10 7.668307 1.490157  1.5647299 0.11764625
#> 115      5 7.668307 1.490157 -1.7906212 0.07335410
#> 116      7 7.668307 1.490157 -0.4484808 0.65380626
#> 117      8 7.668307 1.490157  0.2225895 0.82385504
#> 118      9 7.668307 1.490157  0.8936597 0.37150400
#> 119      7 7.668307 1.490157 -0.4484808 0.65380626
#> 120      9 7.668307 1.490157  0.8936597 0.37150400
#> 121      9 7.668307 1.490157  0.8936597 0.37150400
#> 122      3 7.668307 1.490157 -3.1327617 0.00173170
#> 123      7 7.668307 1.490157 -0.4484808 0.65380626
#> 124      9 7.668307 1.490157  0.8936597 0.37150400
#> 125      9 7.668307 1.490157  0.8936597 0.37150400
#> 126      7 7.668307 1.490157 -0.4484808 0.65380626
#> 127      7 7.668307 1.490157 -0.4484808 0.65380626
#> 128     10 7.668307 1.490157  1.5647299 0.11764625
#> 129      9 7.668307 1.490157  0.8936597 0.37150400
#> 130      8 7.668307 1.490157  0.2225895 0.82385504
#> 131      6 7.668307 1.490157 -1.1195510 0.26290515
#> 132      9 7.668307 1.490157  0.8936597 0.37150400
#> 133      8 7.668307 1.490157  0.2225895 0.82385504
#> 134      9 7.668307 1.490157  0.8936597 0.37150400
#> 135      8 7.668307 1.490157  0.2225895 0.82385504
#> 136      7 7.668307 1.490157 -0.4484808 0.65380626
#> 137      5 7.668307 1.490157 -1.7906212 0.07335410
#> 138      9 7.668307 1.490157  0.8936597 0.37150400
#> 139      8 7.668307 1.490157  0.2225895 0.82385504
#> 140      8 7.668307 1.490157  0.2225895 0.82385504
#> 141      7 7.668307 1.490157 -0.4484808 0.65380626
#> 142      7 7.668307 1.490157 -0.4484808 0.65380626
#> 143     10 7.668307 1.490157  1.5647299 0.11764625
#> 144      8 7.668307 1.490157  0.2225895 0.82385504
#> 145      9 7.668307 1.490157  0.8936597 0.37150400
#> 146      7 7.668307 1.490157 -0.4484808 0.65380626
#> 147      9 7.668307 1.490157  0.8936597 0.37150400
#> 148      9 7.668307 1.490157  0.8936597 0.37150400
#> 149      9 7.668307 1.490157  0.8936597 0.37150400
#> 150      8 7.668307 1.490157  0.2225895 0.82385504
#> 151      9 7.668307 1.490157  0.8936597 0.37150400
#> 152      7 7.668307 1.490157 -0.4484808 0.65380626
#> 153      7 7.668307 1.490157 -0.4484808 0.65380626
#> 154      9 7.668307 1.490157  0.8936597 0.37150400
#> 155      9 7.668307 1.490157  0.8936597 0.37150400
#> 156      9 7.668307 1.490157  0.8936597 0.37150400
#> 157     10 7.668307 1.490157  1.5647299 0.11764625
#> 158      8 7.668307 1.490157  0.2225895 0.82385504
#> 159      8 7.668307 1.490157  0.2225895 0.82385504
#> 160      8 7.668307 1.490157  0.2225895 0.82385504
#> 161      8 7.668307 1.490157  0.2225895 0.82385504
#> 162      9 7.668307 1.490157  0.8936597 0.37150400
#> 163      8 7.668307 1.490157  0.2225895 0.82385504
#> 164     10 7.668307 1.490157  1.5647299 0.11764625
#> 165      8 7.668307 1.490157  0.2225895 0.82385504
#> 166      8 7.668307 1.490157  0.2225895 0.82385504
#> 167     10 7.668307 1.490157  1.5647299 0.11764625
#> 168      8 7.668307 1.490157  0.2225895 0.82385504
#> 169      6 7.668307 1.490157 -1.1195510 0.26290515
#> 170      9 7.668307 1.490157  0.8936597 0.37150400
#> 171      9 7.668307 1.490157  0.8936597 0.37150400
#> 172      9 7.668307 1.490157  0.8936597 0.37150400
#> 173      7 7.668307 1.490157 -0.4484808 0.65380626
#> 174      9 7.668307 1.490157  0.8936597 0.37150400
#> 175      7 7.668307 1.490157 -0.4484808 0.65380626
#> 176     10 7.668307 1.490157  1.5647299 0.11764625
#> 177      9 7.668307 1.490157  0.8936597 0.37150400
#> 178      7 7.668307 1.490157 -0.4484808 0.65380626
#> 179      7 7.668307 1.490157 -0.4484808 0.65380626
#> 180     10 7.668307 1.490157  1.5647299 0.11764625
#> 181      8 7.668307 1.490157  0.2225895 0.82385504
#> 182     11 7.668307 1.490157  2.2358001 0.02536487
#> 183      8 7.668307 1.490157  0.2225895 0.82385504
#> 184      8 7.668307 1.490157  0.2225895 0.82385504
#> 185      9 7.668307 1.490157  0.8936597 0.37150400
#> 186      4 7.668307 1.490157 -2.4616914 0.01382836
#> 187      8 7.668307 1.490157  0.2225895 0.82385504
#> 188      7 7.668307 1.490157 -0.4484808 0.65380626
#> 189      9 7.668307 1.490157  0.8936597 0.37150400
#> 190      8 7.668307 1.490157  0.2225895 0.82385504
#> 191      9 7.668307 1.490157  0.8936597 0.37150400
#> 192      8 7.668307 1.490157  0.2225895 0.82385504
#> 193      7 7.668307 1.490157 -0.4484808 0.65380626
#> 194      9 7.668307 1.490157  0.8936597 0.37150400
#> 195     10 7.668307 1.490157  1.5647299 0.11764625
#> 196      8 7.668307 1.490157  0.2225895 0.82385504
#> 197      8 7.668307 1.490157  0.2225895 0.82385504
#> 198     10 7.668307 1.490157  1.5647299 0.11764625
#> 199      7 7.668307 1.490157 -0.4484808 0.65380626
#> 200     10 7.668307 1.490157  1.5647299 0.11764625
#> 201      7 7.668307 1.490157 -0.4484808 0.65380626
#> 202      8 7.668307 1.490157  0.2225895 0.82385504
#> 203      7 7.668307 1.490157 -0.4484808 0.65380626
#> 204      9 7.668307 1.490157  0.8936597 0.37150400
#> 205      7 7.668307 1.490157 -0.4484808 0.65380626
#> 206      8 7.668307 1.490157  0.2225895 0.82385504
#> 207      7 7.668307 1.490157 -0.4484808 0.65380626
#> 208      8 7.668307 1.490157  0.2225895 0.82385504
#> 209      6 7.668307 1.490157 -1.1195510 0.26290515
#> 210      8 7.668307 1.490157  0.2225895 0.82385504
#> 211      9 7.668307 1.490157  0.8936597 0.37150400
#> 212      8 7.668307 1.490157  0.2225895 0.82385504
#> 213     10 7.668307 1.490157  1.5647299 0.11764625
#> 214      7 7.668307 1.490157 -0.4484808 0.65380626
#> 215      8 7.668307 1.490157  0.2225895 0.82385504
#> 216      7 7.668307 1.490157 -0.4484808 0.65380626
#> 217      8 7.668307 1.490157  0.2225895 0.82385504
#> 218      9 7.668307 1.490157  0.8936597 0.37150400
#> 219      7 7.668307 1.490157 -0.4484808 0.65380626
#> 220      8 7.668307 1.490157  0.2225895 0.82385504
#> 221      6 7.668307 1.490157 -1.1195510 0.26290515
#> 222      9 7.668307 1.490157  0.8936597 0.37150400
#> 223      7 7.668307 1.490157 -0.4484808 0.65380626
#> 224      4 7.668307 1.490157 -2.4616914 0.01382836
#> 225     11 7.668307 1.490157  2.2358001 0.02536487
#> 226      6 7.668307 1.490157 -1.1195510 0.26290515
#> 227      9 7.668307 1.490157  0.8936597 0.37150400
#> 228      6 7.668307 1.490157 -1.1195510 0.26290515
#> 229      6 7.668307 1.490157 -1.1195510 0.26290515
#> 230      7 7.668307 1.490157 -0.4484808 0.65380626
#> 231      7 7.668307 1.490157 -0.4484808 0.65380626
#> 232      7 7.668307 1.490157 -0.4484808 0.65380626
#> 233      6 7.668307 1.490157 -1.1195510 0.26290515
#> 234      7 7.668307 1.490157 -0.4484808 0.65380626
#> 235      8 7.668307 1.490157  0.2225895 0.82385504
#> 236      9 7.668307 1.490157  0.8936597 0.37150400
#> 237      6 7.668307 1.490157 -1.1195510 0.26290515
#> 238     10 7.668307 1.490157  1.5647299 0.11764625
#> 239     10 7.668307 1.490157  1.5647299 0.11764625
#> 240     10 7.668307 1.490157  1.5647299 0.11764625
#> 241     11 7.668307 1.490157  2.2358001 0.02536487
#> 242     11 7.668307 1.490157  2.2358001 0.02536487
#> 243      6 7.668307 1.490157 -1.1195510 0.26290515
#> 244      8 7.668307 1.490157  0.2225895 0.82385504
#> 245      7 7.668307 1.490157 -0.4484808 0.65380626
#> 246      7 7.668307 1.490157 -0.4484808 0.65380626
#> 247      9 7.668307 1.490157  0.8936597 0.37150400
#> 248      9 7.668307 1.490157  0.8936597 0.37150400
#> 249      7 7.668307 1.490157 -0.4484808 0.65380626
#> 250      9 7.668307 1.490157  0.8936597 0.37150400
#> 251      9 7.668307 1.490157  0.8936597 0.37150400
#> 252      6 7.668307 1.490157 -1.1195510 0.26290515
#> 253      7 7.668307 1.490157 -0.4484808 0.65380626
#> 254     10 7.668307 1.490157  1.5647299 0.11764625
#> 255      5 7.668307 1.490157 -1.7906212 0.07335410
#> 256      5 7.668307 1.490157 -1.7906212 0.07335410
#> 257     10 7.668307 1.490157  1.5647299 0.11764625
#> 258      8 7.668307 1.490157  0.2225895 0.82385504
#> 259      9 7.668307 1.490157  0.8936597 0.37150400
#> 260      7 7.668307 1.490157 -0.4484808 0.65380626
#> 261     10 7.668307 1.490157  1.5647299 0.11764625
#> 262      6 7.668307 1.490157 -1.1195510 0.26290515
#> 263      8 7.668307 1.490157  0.2225895 0.82385504
#> 264      6 7.668307 1.490157 -1.1195510 0.26290515
#> 265      7 7.668307 1.490157 -0.4484808 0.65380626
#> 266      7 7.668307 1.490157 -0.4484808 0.65380626
#> 267      7 7.668307 1.490157 -0.4484808 0.65380626
#> 268      9 7.668307 1.490157  0.8936597 0.37150400
#> 269      6 7.668307 1.490157 -1.1195510 0.26290515
#> 270      7 7.668307 1.490157 -0.4484808 0.65380626
#> 271      7 7.668307 1.490157 -0.4484808 0.65380626
#> 272      8 7.668307 1.490157  0.2225895 0.82385504
#> 273      8 7.668307 1.490157  0.2225895 0.82385504
#> 274     10 7.668307 1.490157  1.5647299 0.11764625
#> 275      5 7.668307 1.490157 -1.7906212 0.07335410
#> 276      7 7.668307 1.490157 -0.4484808 0.65380626
#> 277     10 7.668307 1.490157  1.5647299 0.11764625
#> 278      7 7.668307 1.490157 -0.4484808 0.65380626
#> 279      8 7.668307 1.490157  0.2225895 0.82385504
#> 280      7 7.668307 1.490157 -0.4484808 0.65380626
#> 281      7 7.668307 1.490157 -0.4484808 0.65380626
#> 282      8 7.668307 1.490157  0.2225895 0.82385504
#> 283      8 7.668307 1.490157  0.2225895 0.82385504
#> 284      9 7.668307 1.490157  0.8936597 0.37150400
#> 285     10 7.668307 1.490157  1.5647299 0.11764625
#> 286      8 7.668307 1.490157  0.2225895 0.82385504
#> 287      8 7.668307 1.490157  0.2225895 0.82385504
#> 288      9 7.668307 1.490157  0.8936597 0.37150400
#> 289      9 7.668307 1.490157  0.8936597 0.37150400
#> 290     10 7.668307 1.490157  1.5647299 0.11764625
#> 291      9 7.668307 1.490157  0.8936597 0.37150400
#> 292      9 7.668307 1.490157  0.8936597 0.37150400
#> 293     10 7.668307 1.490157  1.5647299 0.11764625
#> 294      8 7.668307 1.490157  0.2225895 0.82385504
#> 295     10 7.668307 1.490157  1.5647299 0.11764625
#> 296      8 7.668307 1.490157  0.2225895 0.82385504
#> 297     10 7.668307 1.490157  1.5647299 0.11764625
#> 298      8 7.668307 1.490157  0.2225895 0.82385504
#> 299      9 7.668307 1.490157  0.8936597 0.37150400
#> 300      9 7.668307 1.490157  0.8936597 0.37150400
#> 301      9 7.668307 1.490157  0.8936597 0.37150400
#> 302      7 7.668307 1.490157 -0.4484808 0.65380626
#> 303      7 7.668307 1.490157 -0.4484808 0.65380626
#> 304      9 7.668307 1.490157  0.8936597 0.37150400
#> 305      8 7.668307 1.490157  0.2225895 0.82385504
#> 306     10 7.668307 1.490157  1.5647299 0.11764625
#> 307      9 7.668307 1.490157  0.8936597 0.37150400
#> 308      6 7.668307 1.490157 -1.1195510 0.26290515
#> 309      8 7.668307 1.490157  0.2225895 0.82385504
#> 310      7 7.668307 1.490157 -0.4484808 0.65380626
#> 311      8 7.668307 1.490157  0.2225895 0.82385504
#> 312      8 7.668307 1.490157  0.2225895 0.82385504
#> 313      9 7.668307 1.490157  0.8936597 0.37150400
#> 314      4 7.668307 1.490157 -2.4616914 0.01382836
#> 315      6 7.668307 1.490157 -1.1195510 0.26290515
#> 316      7 7.668307 1.490157 -0.4484808 0.65380626
#> 317      8 7.668307 1.490157  0.2225895 0.82385504
#> 318      9 7.668307 1.490157  0.8936597 0.37150400
#> 319      8 7.668307 1.490157  0.2225895 0.82385504
#> 320      9 7.668307 1.490157  0.8936597 0.37150400
#> 321      7 7.668307 1.490157 -0.4484808 0.65380626
#> 322      9 7.668307 1.490157  0.8936597 0.37150400
#> 323      9 7.668307 1.490157  0.8936597 0.37150400
#> 324      9 7.668307 1.490157  0.8936597 0.37150400
#> 325      9 7.668307 1.490157  0.8936597 0.37150400
#> 326      5 7.668307 1.490157 -1.7906212 0.07335410
#> 327      6 7.668307 1.490157 -1.1195510 0.26290515
#> 328      8 7.668307 1.490157  0.2225895 0.82385504
#> 329      9 7.668307 1.490157  0.8936597 0.37150400
#> 330     10 7.668307 1.490157  1.5647299 0.11764625
#> 331      8 7.668307 1.490157  0.2225895 0.82385504
#> 332      8 7.668307 1.490157  0.2225895 0.82385504
#> 333      9 7.668307 1.490157  0.8936597 0.37150400
#> 334      8 7.668307 1.490157  0.2225895 0.82385504
#> 335      7 7.668307 1.490157 -0.4484808 0.65380626
#> 336      5 7.668307 1.490157 -1.7906212 0.07335410
#> 337      6 7.668307 1.490157 -1.1195510 0.26290515
#> 338      9 7.668307 1.490157  0.8936597 0.37150400
#> 339      8 7.668307 1.490157  0.2225895 0.82385504
#> 340      6 7.668307 1.490157 -1.1195510 0.26290515
#> 341      6 7.668307 1.490157 -1.1195510 0.26290515
#> 342     11 7.668307 1.490157  2.2358001 0.02536487
#> 343      9 7.668307 1.490157  0.8936597 0.37150400
#> 344     11 7.668307 1.490157  2.2358001 0.02536487
#> 345      9 7.668307 1.490157  0.8936597 0.37150400
#> 346      8 7.668307 1.490157  0.2225895 0.82385504
#> 347      9 7.668307 1.490157  0.8936597 0.37150400
#> 348      8 7.668307 1.490157  0.2225895 0.82385504
#> 349     11 7.668307 1.490157  2.2358001 0.02536487
#> 350      9 7.668307 1.490157  0.8936597 0.37150400
#> 351      9 7.668307 1.490157  0.8936597 0.37150400
#> 352      9 7.668307 1.490157  0.8936597 0.37150400
#> 353      7 7.668307 1.490157 -0.4484808 0.65380626
#> 354      9 7.668307 1.490157  0.8936597 0.37150400
#> 355      8 7.668307 1.490157  0.2225895 0.82385504
#> 356     11 7.668307 1.490157  2.2358001 0.02536487
#> 357      8 7.668307 1.490157  0.2225895 0.82385504
#> 358      9 7.668307 1.490157  0.8936597 0.37150400
#> 359      9 7.668307 1.490157  0.8936597 0.37150400
#> 360      9 7.668307 1.490157  0.8936597 0.37150400
#> 361      9 7.668307 1.490157  0.8936597 0.37150400
#> 362      8 7.668307 1.490157  0.2225895 0.82385504
#> 363      9 7.668307 1.490157  0.8936597 0.37150400
#> 364      6 7.668307 1.490157 -1.1195510 0.26290515
#> 365     10 7.668307 1.490157  1.5647299 0.11764625
#> 366      8 7.668307 1.490157  0.2225895 0.82385504
#> 367     10 7.668307 1.490157  1.5647299 0.11764625
#> 368     10 7.668307 1.490157  1.5647299 0.11764625
#> 369      7 7.668307 1.490157 -0.4484808 0.65380626
#> 370      8 7.668307 1.490157  0.2225895 0.82385504
#> 371      8 7.668307 1.490157  0.2225895 0.82385504
#> 372      9 7.668307 1.490157  0.8936597 0.37150400
#> 373      9 7.668307 1.490157  0.8936597 0.37150400
#> 374     10 7.668307 1.490157  1.5647299 0.11764625
#> 375      9 7.668307 1.490157  0.8936597 0.37150400
#> 376      8 7.668307 1.490157  0.2225895 0.82385504
#> 377     10 7.668307 1.490157  1.5647299 0.11764625
#> 378      8 7.668307 1.490157  0.2225895 0.82385504
#> 379      8 7.668307 1.490157  0.2225895 0.82385504
#> 380      8 7.668307 1.490157  0.2225895 0.82385504
#> 381      7 7.668307 1.490157 -0.4484808 0.65380626
#> 382      6 7.668307 1.490157 -1.1195510 0.26290515
#> 383      8 7.668307 1.490157  0.2225895 0.82385504
#> 384     10 7.668307 1.490157  1.5647299 0.11764625
#> 385      7 7.668307 1.490157 -0.4484808 0.65380626
#> 386      9 7.668307 1.490157  0.8936597 0.37150400
#> 387      8 7.668307 1.490157  0.2225895 0.82385504
#> 388      9 7.668307 1.490157  0.8936597 0.37150400
#> 389      8 7.668307 1.490157  0.2225895 0.82385504
#> 390      7 7.668307 1.490157 -0.4484808 0.65380626
#> 391      4 7.668307 1.490157 -2.4616914 0.01382836
#> 392     10 7.668307 1.490157  1.5647299 0.11764625
#> 393      6 7.668307 1.490157 -1.1195510 0.26290515
#> 394      8 7.668307 1.490157  0.2225895 0.82385504
#> 395      8 7.668307 1.490157  0.2225895 0.82385504
#> 396      7 7.668307 1.490157 -0.4484808 0.65380626
#> 397      8 7.668307 1.490157  0.2225895 0.82385504
#> 398      8 7.668307 1.490157  0.2225895 0.82385504
#> 399      9 7.668307 1.490157  0.8936597 0.37150400
#> 400      9 7.668307 1.490157  0.8936597 0.37150400
#> 401      9 7.668307 1.490157  0.8936597 0.37150400
#> 402      9 7.668307 1.490157  0.8936597 0.37150400
#> 403      9 7.668307 1.490157  0.8936597 0.37150400
#> 404      8 7.668307 1.490157  0.2225895 0.82385504
#> 405      5 7.668307 1.490157 -1.7906212 0.07335410
#> 406      7 7.668307 1.490157 -0.4484808 0.65380626
#> 407      8 7.668307 1.490157  0.2225895 0.82385504
#> 408      8 7.668307 1.490157  0.2225895 0.82385504
#> 409      8 7.668307 1.490157  0.2225895 0.82385504
#> 410      8 7.668307 1.490157  0.2225895 0.82385504
#> 411      8 7.668307 1.490157  0.2225895 0.82385504
#> 412      7 7.668307 1.490157 -0.4484808 0.65380626
#> 413      8 7.668307 1.490157  0.2225895 0.82385504
#> 414     10 7.668307 1.490157  1.5647299 0.11764625
#> 415      8 7.668307 1.490157  0.2225895 0.82385504
#> 416      9 7.668307 1.490157  0.8936597 0.37150400
#> 417      9 7.668307 1.490157  0.8936597 0.37150400
#> 418      8 7.668307 1.490157  0.2225895 0.82385504
#> 419      9 7.668307 1.490157  0.8936597 0.37150400
#> 420      8 7.668307 1.490157  0.2225895 0.82385504
#> 421     11 7.668307 1.490157  2.2358001 0.02536487
#> 422      7 7.668307 1.490157 -0.4484808 0.65380626
#> 423      6 7.668307 1.490157 -1.1195510 0.26290515
#> 424      8 7.668307 1.490157  0.2225895 0.82385504
#> 425      9 7.668307 1.490157  0.8936597 0.37150400
#> 426      5 7.668307 1.490157 -1.7906212 0.07335410
#> 427      9 7.668307 1.490157  0.8936597 0.37150400
#> 428      9 7.668307 1.490157  0.8936597 0.37150400
#> 429     11 7.668307 1.490157  2.2358001 0.02536487
#> 430      8 7.668307 1.490157  0.2225895 0.82385504
#> 431      7 7.668307 1.490157 -0.4484808 0.65380626
#> 432      7 7.668307 1.490157 -0.4484808 0.65380626
#> 433      7 7.668307 1.490157 -0.4484808 0.65380626
#> 434      9 7.668307 1.490157  0.8936597 0.37150400
#> 435      9 7.668307 1.490157  0.8936597 0.37150400
#> 436      8 7.668307 1.490157  0.2225895 0.82385504
#> 437     10 7.668307 1.490157  1.5647299 0.11764625
#> 438      9 7.668307 1.490157  0.8936597 0.37150400
#> 439     10 7.668307 1.490157  1.5647299 0.11764625
#> 440      8 7.668307 1.490157  0.2225895 0.82385504
#> 441     10 7.668307 1.490157  1.5647299 0.11764625
#> 442      9 7.668307 1.490157  0.8936597 0.37150400
#> 443      7 7.668307 1.490157 -0.4484808 0.65380626
#> 444      8 7.668307 1.490157  0.2225895 0.82385504
#> 445     10 7.668307 1.490157  1.5647299 0.11764625
#> 446      8 7.668307 1.490157  0.2225895 0.82385504
#> 447      5 7.668307 1.490157 -1.7906212 0.07335410
#> 448      6 7.668307 1.490157 -1.1195510 0.26290515
#> 449      8 7.668307 1.490157  0.2225895 0.82385504
#> 450      8 7.668307 1.490157  0.2225895 0.82385504
#> 451      8 7.668307 1.490157  0.2225895 0.82385504
#> 452      8 7.668307 1.490157  0.2225895 0.82385504
#> 453      9 7.668307 1.490157  0.8936597 0.37150400
#> 454     10 7.668307 1.490157  1.5647299 0.11764625
#> 455     10 7.668307 1.490157  1.5647299 0.11764625
#> 456      8 7.668307 1.490157  0.2225895 0.82385504
#> 457      7 7.668307 1.490157 -0.4484808 0.65380626
#> 458      7 7.668307 1.490157 -0.4484808 0.65380626
#> 459      9 7.668307 1.490157  0.8936597 0.37150400
#> 460      9 7.668307 1.490157  0.8936597 0.37150400
#> 461      6 7.668307 1.490157 -1.1195510 0.26290515
#> 462      5 7.668307 1.490157 -1.7906212 0.07335410
#> 463     10 7.668307 1.490157  1.5647299 0.11764625
#> 464      8 7.668307 1.490157  0.2225895 0.82385504
#> 465      8 7.668307 1.490157  0.2225895 0.82385504
#> 466      7 7.668307 1.490157 -0.4484808 0.65380626
#> 467      6 7.668307 1.490157 -1.1195510 0.26290515
#> 468      9 7.668307 1.490157  0.8936597 0.37150400
#> 469      8 7.668307 1.490157  0.2225895 0.82385504
#> 470      8 7.668307 1.490157  0.2225895 0.82385504
#> 471      8 7.668307 1.490157  0.2225895 0.82385504
#> 472      7 7.668307 1.490157 -0.4484808 0.65380626
#> 473     10 7.668307 1.490157  1.5647299 0.11764625
#> 474      8 7.668307 1.490157  0.2225895 0.82385504
#> 475      9 7.668307 1.490157  0.8936597 0.37150400
#> 476     10 7.668307 1.490157  1.5647299 0.11764625
#> 477      7 7.668307 1.490157 -0.4484808 0.65380626
#> 478      4 7.668307 1.490157 -2.4616914 0.01382836
#> 479      6 7.668307 1.490157 -1.1195510 0.26290515
#> 480      8 7.668307 1.490157  0.2225895 0.82385504
#> 481      8 7.668307 1.490157  0.2225895 0.82385504
#> 482      8 7.668307 1.490157  0.2225895 0.82385504
#> 483      7 7.668307 1.490157 -0.4484808 0.65380626
#> 484      7 7.668307 1.490157 -0.4484808 0.65380626
#> 485      6 7.668307 1.490157 -1.1195510 0.26290515
#> 486      8 7.668307 1.490157  0.2225895 0.82385504
#> 487      9 7.668307 1.490157  0.8936597 0.37150400
#> 488      8 7.668307 1.490157  0.2225895 0.82385504
#> 489     10 7.668307 1.490157  1.5647299 0.11764625
#> 490     10 7.668307 1.490157  1.5647299 0.11764625
#> 491      8 7.668307 1.490157  0.2225895 0.82385504
#> 492      6 7.668307 1.490157 -1.1195510 0.26290515
#> 493      9 7.668307 1.490157  0.8936597 0.37150400
#> 494      6 7.668307 1.490157 -1.1195510 0.26290515
#> 495      7 7.668307 1.490157 -0.4484808 0.65380626
#> 496      9 7.668307 1.490157  0.8936597 0.37150400
#> 497      8 7.668307 1.490157  0.2225895 0.82385504
#> 498      6 7.668307 1.490157 -1.1195510 0.26290515
#> 499      7 7.668307 1.490157 -0.4484808 0.65380626
#> 500      8 7.668307 1.490157  0.2225895 0.82385504
#> 501      9 7.668307 1.490157  0.8936597 0.37150400
#> 502     10 7.668307 1.490157  1.5647299 0.11764625
#> 503      7 7.668307 1.490157 -0.4484808 0.65380626
#> 504      5 7.668307 1.490157 -1.7906212 0.07335410
#> 505      9 7.668307 1.490157  0.8936597 0.37150400
#> 506      7 7.668307 1.490157 -0.4484808 0.65380626
#> 507      6 7.668307 1.490157 -1.1195510 0.26290515
#> 508     10 7.668307 1.490157  1.5647299 0.11764625
#> 509      8 7.668307 1.490157  0.2225895 0.82385504
#> 510      7 7.668307 1.490157 -0.4484808 0.65380626
#> 511      8 7.668307 1.490157  0.2225895 0.82385504
#> 512     10 7.668307 1.490157  1.5647299 0.11764625
#> 513      9 7.668307 1.490157  0.8936597 0.37150400
#> 514      9 7.668307 1.490157  0.8936597 0.37150400
#> 515     10 7.668307 1.490157  1.5647299 0.11764625
#> 516     11 7.668307 1.490157  2.2358001 0.02536487
#> 517      7 7.668307 1.490157 -0.4484808 0.65380626
#> 518      7 7.668307 1.490157 -0.4484808 0.65380626
#> 519      9 7.668307 1.490157  0.8936597 0.37150400
#> 520      9 7.668307 1.490157  0.8936597 0.37150400
#> 521      7 7.668307 1.490157 -0.4484808 0.65380626
#> 522      6 7.668307 1.490157 -1.1195510 0.26290515
#> 523     10 7.668307 1.490157  1.5647299 0.11764625
#> 524      8 7.668307 1.490157  0.2225895 0.82385504
#> 525     10 7.668307 1.490157  1.5647299 0.11764625
#> 526      7 7.668307 1.490157 -0.4484808 0.65380626
#> 527      6 7.668307 1.490157 -1.1195510 0.26290515
#> 528      7 7.668307 1.490157 -0.4484808 0.65380626
#> 529      9 7.668307 1.490157  0.8936597 0.37150400
#> 530      6 7.668307 1.490157 -1.1195510 0.26290515
#> 531      9 7.668307 1.490157  0.8936597 0.37150400
#> 532     10 7.668307 1.490157  1.5647299 0.11764625
#> 533     10 7.668307 1.490157  1.5647299 0.11764625
#> 534      8 7.668307 1.490157  0.2225895 0.82385504
#> 535     10 7.668307 1.490157  1.5647299 0.11764625
#> 536      8 7.668307 1.490157  0.2225895 0.82385504
#> 537      9 7.668307 1.490157  0.8936597 0.37150400
#> 538      8 7.668307 1.490157  0.2225895 0.82385504
#> 539      8 7.668307 1.490157  0.2225895 0.82385504
#> 540      8 7.668307 1.490157  0.2225895 0.82385504
#> 541      9 7.668307 1.490157  0.8936597 0.37150400
#> 542      9 7.668307 1.490157  0.8936597 0.37150400
#> 543      8 7.668307 1.490157  0.2225895 0.82385504
#> 544      8 7.668307 1.490157  0.2225895 0.82385504
#> 545      8 7.668307 1.490157  0.2225895 0.82385504
#> 546      9 7.668307 1.490157  0.8936597 0.37150400
#> 547      9 7.668307 1.490157  0.8936597 0.37150400
#> 548      8 7.668307 1.490157  0.2225895 0.82385504
#> 549      7 7.668307 1.490157 -0.4484808 0.65380626
#> 550     10 7.668307 1.490157  1.5647299 0.11764625
#> 551     10 7.668307 1.490157  1.5647299 0.11764625
#> 552      9 7.668307 1.490157  0.8936597 0.37150400
#> 553     10 7.668307 1.490157  1.5647299 0.11764625
#> 554      9 7.668307 1.490157  0.8936597 0.37150400
#> 555      8 7.668307 1.490157  0.2225895 0.82385504
#> 556      8 7.668307 1.490157  0.2225895 0.82385504
#> 557     10 7.668307 1.490157  1.5647299 0.11764625
#> 558      7 7.668307 1.490157 -0.4484808 0.65380626
#> 559      9 7.668307 1.490157  0.8936597 0.37150400
#> 560      8 7.668307 1.490157  0.2225895 0.82385504
#> 561      9 7.668307 1.490157  0.8936597 0.37150400
#> 562      9 7.668307 1.490157  0.8936597 0.37150400
#> 563      8 7.668307 1.490157  0.2225895 0.82385504
#> 564      9 7.668307 1.490157  0.8936597 0.37150400
#> 565      6 7.668307 1.490157 -1.1195510 0.26290515
#> 566     10 7.668307 1.490157  1.5647299 0.11764625
#> 567     10 7.668307 1.490157  1.5647299 0.11764625
#> 568     10 7.668307 1.490157  1.5647299 0.11764625
#> 569     10 7.668307 1.490157  1.5647299 0.11764625
#> 570      8 7.668307 1.490157  0.2225895 0.82385504
#> 571      9 7.668307 1.490157  0.8936597 0.37150400
#> 572      6 7.668307 1.490157 -1.1195510 0.26290515
#> 573      9 7.668307 1.490157  0.8936597 0.37150400
#> 574      9 7.668307 1.490157  0.8936597 0.37150400
#> 575      9 7.668307 1.490157  0.8936597 0.37150400
#> 576      8 7.668307 1.490157  0.2225895 0.82385504
#> 577     10 7.668307 1.490157  1.5647299 0.11764625
#> 578      7 7.668307 1.490157 -0.4484808 0.65380626
#> 579      8 7.668307 1.490157  0.2225895 0.82385504
#> 580      7 7.668307 1.490157 -0.4484808 0.65380626
#> 581      8 7.668307 1.490157  0.2225895 0.82385504
#> 582     10 7.668307 1.490157  1.5647299 0.11764625
#> 583      7 7.668307 1.490157 -0.4484808 0.65380626
#> 584      9 7.668307 1.490157  0.8936597 0.37150400
#> 585      7 7.668307 1.490157 -0.4484808 0.65380626
#> 586      5 7.668307 1.490157 -1.7906212 0.07335410
#> 587      6 7.668307 1.490157 -1.1195510 0.26290515
#> 588      6 7.668307 1.490157 -1.1195510 0.26290515
#> 589      7 7.668307 1.490157 -0.4484808 0.65380626
#> 590     10 7.668307 1.490157  1.5647299 0.11764625
#> 591      7 7.668307 1.490157 -0.4484808 0.65380626
#> 592      8 7.668307 1.490157  0.2225895 0.82385504
#> 593      9 7.668307 1.490157  0.8936597 0.37150400
#> 594      9 7.668307 1.490157  0.8936597 0.37150400
#> 595     10 7.668307 1.490157  1.5647299 0.11764625
#> 596      9 7.668307 1.490157  0.8936597 0.37150400
#> 597      5 7.668307 1.490157 -1.7906212 0.07335410
#> 598      9 7.668307 1.490157  0.8936597 0.37150400
#> 599     10 7.668307 1.490157  1.5647299 0.11764625
#> 600      6 7.668307 1.490157 -1.1195510 0.26290515
#> 601      5 7.668307 1.490157 -1.7906212 0.07335410
#> 602      8 7.668307 1.490157  0.2225895 0.82385504
#> 603      9 7.668307 1.490157  0.8936597 0.37150400
#> 604     10 7.668307 1.490157  1.5647299 0.11764625
#> 605      8 7.668307 1.490157  0.2225895 0.82385504
#> 606      8 7.668307 1.490157  0.2225895 0.82385504
#> 607      4 7.668307 1.490157 -2.4616914 0.01382836
#> 608      9 7.668307 1.490157  0.8936597 0.37150400
#> 609      8 7.668307 1.490157  0.2225895 0.82385504
#> 610      9 7.668307 1.490157  0.8936597 0.37150400
#> 611     10 7.668307 1.490157  1.5647299 0.11764625
#> 612      7 7.668307 1.490157 -0.4484808 0.65380626
#> 613      8 7.668307 1.490157  0.2225895 0.82385504
#> 614      9 7.668307 1.490157  0.8936597 0.37150400
#> 615      7 7.668307 1.490157 -0.4484808 0.65380626
#> 616      6 7.668307 1.490157 -1.1195510 0.26290515
#> 617      4 7.668307 1.490157 -2.4616914 0.01382836
#> 618      6 7.668307 1.490157 -1.1195510 0.26290515
#> 619      6 7.668307 1.490157 -1.1195510 0.26290515
#> 620      8 7.668307 1.490157  0.2225895 0.82385504
#> 621      8 7.668307 1.490157  0.2225895 0.82385504
#> 622      7 7.668307 1.490157 -0.4484808 0.65380626
#> 623      5 7.668307 1.490157 -1.7906212 0.07335410
#> 624      6 7.668307 1.490157 -1.1195510 0.26290515
#> 625      9 7.668307 1.490157  0.8936597 0.37150400
#> 626      8 7.668307 1.490157  0.2225895 0.82385504
#> 627      7 7.668307 1.490157 -0.4484808 0.65380626
#> 628      9 7.668307 1.490157  0.8936597 0.37150400
#> 629      9 7.668307 1.490157  0.8936597 0.37150400
#> 630      7 7.668307 1.490157 -0.4484808 0.65380626
#> 631      8 7.668307 1.490157  0.2225895 0.82385504
#> 632      8 7.668307 1.490157  0.2225895 0.82385504
#> 633      9 7.668307 1.490157  0.8936597 0.37150400
#> 634      8 7.668307 1.490157  0.2225895 0.82385504
#> 635      8 7.668307 1.490157  0.2225895 0.82385504
#> 636      8 7.668307 1.490157  0.2225895 0.82385504
#> 637     10 7.668307 1.490157  1.5647299 0.11764625
#> 638      9 7.668307 1.490157  0.8936597 0.37150400
#> 639      7 7.668307 1.490157 -0.4484808 0.65380626
#> 640      9 7.668307 1.490157  0.8936597 0.37150400
#> 641      7 7.668307 1.490157 -0.4484808 0.65380626
#> 642     11 7.668307 1.490157  2.2358001 0.02536487
#> 643      8 7.668307 1.490157  0.2225895 0.82385504
#> 644      9 7.668307 1.490157  0.8936597 0.37150400
#> 645      7 7.668307 1.490157 -0.4484808 0.65380626
#> 646     10 7.668307 1.490157  1.5647299 0.11764625
#> 647      5 7.668307 1.490157 -1.7906212 0.07335410
#> 648      5 7.668307 1.490157 -1.7906212 0.07335410
#> 649      8 7.668307 1.490157  0.2225895 0.82385504
#> 650      9 7.668307 1.490157  0.8936597 0.37150400
#> 651      9 7.668307 1.490157  0.8936597 0.37150400
#> 652      6 7.668307 1.490157 -1.1195510 0.26290515
#> 653      7 7.668307 1.490157 -0.4484808 0.65380626
#> 654      8 7.668307 1.490157  0.2225895 0.82385504
#> 655      7 7.668307 1.490157 -0.4484808 0.65380626
#> 656      8 7.668307 1.490157  0.2225895 0.82385504
#> 657      8 7.668307 1.490157  0.2225895 0.82385504
#> 658      9 7.668307 1.490157  0.8936597 0.37150400
#> 659      7 7.668307 1.490157 -0.4484808 0.65380626
#> 660      9 7.668307 1.490157  0.8936597 0.37150400
#> 661      9 7.668307 1.490157  0.8936597 0.37150400
#> 662      7 7.668307 1.490157 -0.4484808 0.65380626
#> 663      9 7.668307 1.490157  0.8936597 0.37150400
#> 664      8 7.668307 1.490157  0.2225895 0.82385504
#> 665      8 7.668307 1.490157  0.2225895 0.82385504
#> 666     11 7.668307 1.490157  2.2358001 0.02536487
#> 667      8 7.668307 1.490157  0.2225895 0.82385504
#> 668      9 7.668307 1.490157  0.8936597 0.37150400
#> 669      9 7.668307 1.490157  0.8936597 0.37150400
#> 670      8 7.668307 1.490157  0.2225895 0.82385504
#> 671      9 7.668307 1.490157  0.8936597 0.37150400
#> 672     10 7.668307 1.490157  1.5647299 0.11764625
#> 673     10 7.668307 1.490157  1.5647299 0.11764625
#> 674      8 7.668307 1.490157  0.2225895 0.82385504
#> 675      9 7.668307 1.490157  0.8936597 0.37150400
#> 676      9 7.668307 1.490157  0.8936597 0.37150400
#> 677      9 7.668307 1.490157  0.8936597 0.37150400
#> 678      9 7.668307 1.490157  0.8936597 0.37150400
#> 679      9 7.668307 1.490157  0.8936597 0.37150400
#> 680      9 7.668307 1.490157  0.8936597 0.37150400
#> 681      6 7.668307 1.490157 -1.1195510 0.26290515
#> 682      6 7.668307 1.490157 -1.1195510 0.26290515
#> 683      7 7.668307 1.490157 -0.4484808 0.65380626
#> 684      8 7.668307 1.490157  0.2225895 0.82385504
#> 685      8 7.668307 1.490157  0.2225895 0.82385504
#> 686      7 7.668307 1.490157 -0.4484808 0.65380626
#> 687      8 7.668307 1.490157  0.2225895 0.82385504
#> 688      8 7.668307 1.490157  0.2225895 0.82385504
#> 689      8 7.668307 1.490157  0.2225895 0.82385504
#> 690      8 7.668307 1.490157  0.2225895 0.82385504
#> 691      7 7.668307 1.490157 -0.4484808 0.65380626
#> 692      6 7.668307 1.490157 -1.1195510 0.26290515
#> 693     10 7.668307 1.490157  1.5647299 0.11764625
#> 694      7 7.668307 1.490157 -0.4484808 0.65380626
#> 695      6 7.668307 1.490157 -1.1195510 0.26290515
#> 696     11 7.668307 1.490157  2.2358001 0.02536487
#> 697      8 7.668307 1.490157  0.2225895 0.82385504
#> 698      6 7.668307 1.490157 -1.1195510 0.26290515
#> 699      7 7.668307 1.490157 -0.4484808 0.65380626
#> 700      7 7.668307 1.490157 -0.4484808 0.65380626
#> 701      6 7.668307 1.490157 -1.1195510 0.26290515
#> 702      8 7.668307 1.490157  0.2225895 0.82385504
#> 703      8 7.668307 1.490157  0.2225895 0.82385504
#> 704      8 7.668307 1.490157  0.2225895 0.82385504
#> 705      8 7.668307 1.490157  0.2225895 0.82385504
#> 706     10 7.668307 1.490157  1.5647299 0.11764625
#> 707      9 7.668307 1.490157  0.8936597 0.37150400
#> 708      6 7.668307 1.490157 -1.1195510 0.26290515
#> 709      8 7.668307 1.490157  0.2225895 0.82385504
#> 710     10 7.668307 1.490157  1.5647299 0.11764625
#> 711      9 7.668307 1.490157  0.8936597 0.37150400
#> 712      9 7.668307 1.490157  0.8936597 0.37150400
#> 713      8 7.668307 1.490157  0.2225895 0.82385504
#> 714      8 7.668307 1.490157  0.2225895 0.82385504
#> 715     10 7.668307 1.490157  1.5647299 0.11764625
#> 716      7 7.668307 1.490157 -0.4484808 0.65380626
#> 717      7 7.668307 1.490157 -0.4484808 0.65380626
#> 718      9 7.668307 1.490157  0.8936597 0.37150400
#> 719      8 7.668307 1.490157  0.2225895 0.82385504
#> 720      8 7.668307 1.490157  0.2225895 0.82385504
#> 721      9 7.668307 1.490157  0.8936597 0.37150400
#> 722      9 7.668307 1.490157  0.8936597 0.37150400
#> 723      8 7.668307 1.490157  0.2225895 0.82385504
#> 724      8 7.668307 1.490157  0.2225895 0.82385504
#> 725      6 7.668307 1.490157 -1.1195510 0.26290515
#> 726     10 7.668307 1.490157  1.5647299 0.11764625
#> 727      8 7.668307 1.490157  0.2225895 0.82385504
#> 728      9 7.668307 1.490157  0.8936597 0.37150400
#> 729      7 7.668307 1.490157 -0.4484808 0.65380626
#> 730      9 7.668307 1.490157  0.8936597 0.37150400
#> 731      9 7.668307 1.490157  0.8936597 0.37150400
#> 732      7 7.668307 1.490157 -0.4484808 0.65380626
#> 733     10 7.668307 1.490157  1.5647299 0.11764625
#> 734      6 7.668307 1.490157 -1.1195510 0.26290515
#> 735      6 7.668307 1.490157 -1.1195510 0.26290515
#> 736      5 7.668307 1.490157 -1.7906212 0.07335410
#> 737      6 7.668307 1.490157 -1.1195510 0.26290515
#> 738      7 7.668307 1.490157 -0.4484808 0.65380626
#> 739     10 7.668307 1.490157  1.5647299 0.11764625
#> 740      9 7.668307 1.490157  0.8936597 0.37150400
#> 741      9 7.668307 1.490157  0.8936597 0.37150400
#> 742      7 7.668307 1.490157 -0.4484808 0.65380626
#> 743      8 7.668307 1.490157  0.2225895 0.82385504
#> 744      7 7.668307 1.490157 -0.4484808 0.65380626
#> 745      9 7.668307 1.490157  0.8936597 0.37150400
#> 746      9 7.668307 1.490157  0.8936597 0.37150400
#> 747      6 7.668307 1.490157 -1.1195510 0.26290515
#> 748      9 7.668307 1.490157  0.8936597 0.37150400
#> 749      9 7.668307 1.490157  0.8936597 0.37150400
#> 750      6 7.668307 1.490157 -1.1195510 0.26290515
#> 751      8 7.668307 1.490157  0.2225895 0.82385504
#> 752      8 7.668307 1.490157  0.2225895 0.82385504
#> 753      9 7.668307 1.490157  0.8936597 0.37150400
#> 754      9 7.668307 1.490157  0.8936597 0.37150400
#> 755      7 7.668307 1.490157 -0.4484808 0.65380626
#> 756      9 7.668307 1.490157  0.8936597 0.37150400
#> 757     11 7.668307 1.490157  2.2358001 0.02536487
#> 758      7 7.668307 1.490157 -0.4484808 0.65380626
#> 759      9 7.668307 1.490157  0.8936597 0.37150400
#> 760      7 7.668307 1.490157 -0.4484808 0.65380626
#> 761      9 7.668307 1.490157  0.8936597 0.37150400
#> 762      7 7.668307 1.490157 -0.4484808 0.65380626
#> 763      8 7.668307 1.490157  0.2225895 0.82385504
#> 764      8 7.668307 1.490157  0.2225895 0.82385504
#> 765      4 7.668307 1.490157 -2.4616914 0.01382836
#> 766      8 7.668307 1.490157  0.2225895 0.82385504
#> 767      9 7.668307 1.490157  0.8936597 0.37150400
#> 768      8 7.668307 1.490157  0.2225895 0.82385504
#> 769     11 7.668307 1.490157  2.2358001 0.02536487
#> 770      8 7.668307 1.490157  0.2225895 0.82385504
#> 771     10 7.668307 1.490157  1.5647299 0.11764625
#> 772      7 7.668307 1.490157 -0.4484808 0.65380626
#> 773      6 7.668307 1.490157 -1.1195510 0.26290515
#> 774     10 7.668307 1.490157  1.5647299 0.11764625
#> 775      7 7.668307 1.490157 -0.4484808 0.65380626
#> 776      9 7.668307 1.490157  0.8936597 0.37150400
#> 777      8 7.668307 1.490157  0.2225895 0.82385504
#> 778      6 7.668307 1.490157 -1.1195510 0.26290515
#> 779      8 7.668307 1.490157  0.2225895 0.82385504
#> 780     10 7.668307 1.490157  1.5647299 0.11764625
#> 781     10 7.668307 1.490157  1.5647299 0.11764625
#> 782     10 7.668307 1.490157  1.5647299 0.11764625
#> 783      9 7.668307 1.490157  0.8936597 0.37150400
#> 784      6 7.668307 1.490157 -1.1195510 0.26290515
#> 785     10 7.668307 1.490157  1.5647299 0.11764625
#> 786      7 7.668307 1.490157 -0.4484808 0.65380626
#> 787      8 7.668307 1.490157  0.2225895 0.82385504
#> 788      9 7.668307 1.490157  0.8936597 0.37150400
#> 789     10 7.668307 1.490157  1.5647299 0.11764625
#> 790      5 7.668307 1.490157 -1.7906212 0.07335410
#> 791      9 7.668307 1.490157  0.8936597 0.37150400
#> 792      8 7.668307 1.490157  0.2225895 0.82385504
#> 793      8 7.668307 1.490157  0.2225895 0.82385504
#> 794      8 7.668307 1.490157  0.2225895 0.82385504
#> 795      7 7.668307 1.490157 -0.4484808 0.65380626
#> 796      7 7.668307 1.490157 -0.4484808 0.65380626
#> 797      6 7.668307 1.490157 -1.1195510 0.26290515
#> 798      8 7.668307 1.490157  0.2225895 0.82385504
#> 799      8 7.668307 1.490157  0.2225895 0.82385504
#> 800      9 7.668307 1.490157  0.8936597 0.37150400
#> 801      8 7.668307 1.490157  0.2225895 0.82385504
#> 802     10 7.668307 1.490157  1.5647299 0.11764625
#> 803      7 7.668307 1.490157 -0.4484808 0.65380626
#> 804      9 7.668307 1.490157  0.8936597 0.37150400
#> 805     10 7.668307 1.490157  1.5647299 0.11764625
#> 806      8 7.668307 1.490157  0.2225895 0.82385504
#> 807     10 7.668307 1.490157  1.5647299 0.11764625
#> 808      8 7.668307 1.490157  0.2225895 0.82385504
#> 809      7 7.668307 1.490157 -0.4484808 0.65380626
#> 810     10 7.668307 1.490157  1.5647299 0.11764625
#> 811     10 7.668307 1.490157  1.5647299 0.11764625
#> 812      9 7.668307 1.490157  0.8936597 0.37150400
#> 813      9 7.668307 1.490157  0.8936597 0.37150400
#> 814      5 7.668307 1.490157 -1.7906212 0.07335410
#> 815     10 7.668307 1.490157  1.5647299 0.11764625
#> 816     10 7.668307 1.490157  1.5647299 0.11764625
#> 817      9 7.668307 1.490157  0.8936597 0.37150400
#> 818     10 7.668307 1.490157  1.5647299 0.11764625
#> 819      9 7.668307 1.490157  0.8936597 0.37150400
#> 820      7 7.668307 1.490157 -0.4484808 0.65380626
#> 821      8 7.668307 1.490157  0.2225895 0.82385504
#> 822      7 7.668307 1.490157 -0.4484808 0.65380626
#> 823      6 7.668307 1.490157 -1.1195510 0.26290515
#> 824      5 7.668307 1.490157 -1.7906212 0.07335410
#> 825      7 7.668307 1.490157 -0.4484808 0.65380626
#> 826      7 7.668307 1.490157 -0.4484808 0.65380626
#> 827      9 7.668307 1.490157  0.8936597 0.37150400
#> 828      6 7.668307 1.490157 -1.1195510 0.26290515
#> 829      8 7.668307 1.490157  0.2225895 0.82385504
#> 830      9 7.668307 1.490157  0.8936597 0.37150400
#> 831      9 7.668307 1.490157  0.8936597 0.37150400
#> 832      9 7.668307 1.490157  0.8936597 0.37150400
#> 833      7 7.668307 1.490157 -0.4484808 0.65380626
#> 834      8 7.668307 1.490157  0.2225895 0.82385504
#> 835      8 7.668307 1.490157  0.2225895 0.82385504
#> 836      8 7.668307 1.490157  0.2225895 0.82385504
#> 837      9 7.668307 1.490157  0.8936597 0.37150400
#> 838      8 7.668307 1.490157  0.2225895 0.82385504
#> 839      8 7.668307 1.490157  0.2225895 0.82385504
#> 840      7 7.668307 1.490157 -0.4484808 0.65380626
#> 841      9 7.668307 1.490157  0.8936597 0.37150400
#> 842      9 7.668307 1.490157  0.8936597 0.37150400
#> 843      7 7.668307 1.490157 -0.4484808 0.65380626
#> 844     10 7.668307 1.490157  1.5647299 0.11764625
#> 845      9 7.668307 1.490157  0.8936597 0.37150400
#> 846      9 7.668307 1.490157  0.8936597 0.37150400
#> 847      9 7.668307 1.490157  0.8936597 0.37150400
#> 848      8 7.668307 1.490157  0.2225895 0.82385504
#> 849      5 7.668307 1.490157 -1.7906212 0.07335410
#> 850      9 7.668307 1.490157  0.8936597 0.37150400
#> 851     10 7.668307 1.490157  1.5647299 0.11764625
#> 852      8 7.668307 1.490157  0.2225895 0.82385504
#> 853      7 7.668307 1.490157 -0.4484808 0.65380626
#> 854     10 7.668307 1.490157  1.5647299 0.11764625
#> 855      7 7.668307 1.490157 -0.4484808 0.65380626
#> 856      9 7.668307 1.490157  0.8936597 0.37150400
#> 857      9 7.668307 1.490157  0.8936597 0.37150400
#> 858      7 7.668307 1.490157 -0.4484808 0.65380626
#> 859      8 7.668307 1.490157  0.2225895 0.82385504
#> 860     10 7.668307 1.490157  1.5647299 0.11764625
#> 861      8 7.668307 1.490157  0.2225895 0.82385504
#> 862      7 7.668307 1.490157 -0.4484808 0.65380626
#> 863      7 7.668307 1.490157 -0.4484808 0.65380626
#> 864      7 7.668307 1.490157 -0.4484808 0.65380626
#> 865      7 7.668307 1.490157 -0.4484808 0.65380626
#> 866      9 7.668307 1.490157  0.8936597 0.37150400
#> 867      6 7.668307 1.490157 -1.1195510 0.26290515
#> 868      8 7.668307 1.490157  0.2225895 0.82385504
#> 869      9 7.668307 1.490157  0.8936597 0.37150400
#> 870      8 7.668307 1.490157  0.2225895 0.82385504
#> 871      8 7.668307 1.490157  0.2225895 0.82385504
#> 872     10 7.668307 1.490157  1.5647299 0.11764625
#> 873      6 7.668307 1.490157 -1.1195510 0.26290515
#> 874      7 7.668307 1.490157 -0.4484808 0.65380626
#> 875      8 7.668307 1.490157  0.2225895 0.82385504
#> 876      8 7.668307 1.490157  0.2225895 0.82385504
#> 877      7 7.668307 1.490157 -0.4484808 0.65380626
plot(lsrq, sf = FastFood.sf, sig = 0.05)

# }

# Case 3: With a sf object (poligons)
fname <- system.file("shape/nc.shp", package="sf")
nc <- sf::st_read(fname)
#> Reading layer `nc' from data source 
#>   `/home/runner/work/_temp/Library/sf/shape/nc.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 100 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
#> Geodetic CRS:  NAD27
listw <- spdep::poly2nb(as(nc,"Spatial"), queen = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
p <- c(1/6,3/6,2/6)
rho = 0.5
nc$fx <- dgp.spq(p = p, listw = listw, rho = rho)
plot(nc["fx"])

formula <- ~ fx
lsrq <- local.sp.runs.test(formula = formula, data = nc, listw = listw)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     runs.i      E.i     Std.i     z.value     p.value
#> 1        4 2.855152 0.8722689  1.31249497 0.189353181
#> 2        4 2.855152 0.8722689  1.31249497 0.189353181
#> 3        4 4.091919 1.1317511 -0.08121856 0.935268142
#> 4        3 2.236768 0.7064182  1.08042568 0.279952664
#> 5        4 3.473535 1.0106752  0.52090392 0.602433708
#> 6        4 2.855152 0.8722689  1.31249497 0.189353181
#> 7        3 2.855152 0.8722689  0.16605945 0.868110166
#> 8        5 4.091919 1.1317511  0.80236794 0.422340153
#> 9        4 3.473535 1.0106752  0.52090392 0.602433708
#> 10       4 2.855152 0.8722689  1.31249497 0.189353181
#> 11       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 12       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 13       5 4.091919 1.1317511  0.80236794 0.422340153
#> 14       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 15       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 16       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 17       4 2.855152 0.8722689  1.31249497 0.189353181
#> 18       3 5.947071 1.4323964 -2.05744075 0.039643848
#> 19       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 20       3 2.855152 0.8722689  0.16605945 0.868110166
#> 21       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 22       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 23       5 4.091919 1.1317511  0.80236794 0.422340153
#> 24       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 25       5 4.710303 1.2405813  0.23351712 0.815359874
#> 26       6 4.091919 1.1317511  1.68595444 0.091804576
#> 27       6 4.710303 1.2405813  1.03959088 0.298530015
#> 28       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 29       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 30       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 31       5 4.091919 1.1317511  0.80236794 0.422340153
#> 32       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 33       6 4.091919 1.1317511  1.68595444 0.091804576
#> 34       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 35       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 36       6 4.710303 1.2405813  1.03959088 0.298530015
#> 37       6 4.710303 1.2405813  1.03959088 0.298530015
#> 38       3 2.855152 0.8722689  0.16605945 0.868110166
#> 39       6 6.565455 1.5186493 -0.37234044 0.709639393
#> 40       5 4.091919 1.1317511  0.80236794 0.422340153
#> 41       4 3.473535 1.0106752  0.52090392 0.602433708
#> 42       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 43       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 44       5 4.091919 1.1317511  0.80236794 0.422340153
#> 45       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 46       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 47       2 4.710303 1.2405813 -2.18470415 0.028910546
#> 48       2 5.947071 1.4323964 -2.75557153 0.005858969
#> 49       5 4.710303 1.2405813  0.23351712 0.815359874
#> 50       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 51       6 5.328687 1.3401523  0.50092302 0.616425301
#> 52       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 53       7 4.710303 1.2405813  1.84566464 0.064940915
#> 54       5 4.710303 1.2405813  0.23351712 0.815359874
#> 55       5 4.091919 1.1317511  0.80236794 0.422340153
#> 56       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 57       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 58       4 3.473535 1.0106752  0.52090392 0.602433708
#> 59       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 60       1 2.855152 0.8722689 -2.12681160 0.033435740
#> 61       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 62       5 4.710303 1.2405813  0.23351712 0.815359874
#> 63       6 5.328687 1.3401523  0.50092302 0.616425301
#> 64       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 65       5 4.091919 1.1317511  0.80236794 0.422340153
#> 66       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 67       8 5.947071 1.4323964  1.43321312 0.151796942
#> 68       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 69       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 70       5 4.710303 1.2405813  0.23351712 0.815359874
#> 71       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 72       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 73       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 74       5 4.710303 1.2405813  0.23351712 0.815359874
#> 75       3 2.855152 0.8722689  0.16605945 0.868110166
#> 76       4 2.855152 0.8722689  1.31249497 0.189353181
#> 77       1 2.236768 0.7064182 -1.75075861 0.079987499
#> 78       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 79       5 5.328687 1.3401523 -0.24526083 0.806254475
#> 80       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 81       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 82       6 4.710303 1.2405813  1.03959088 0.298530015
#> 83       6 4.091919 1.1317511  1.68595444 0.091804576
#> 84       4 3.473535 1.0106752  0.52090392 0.602433708
#> 85       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 86       4 3.473535 1.0106752  0.52090392 0.602433708
#> 87       4 3.473535 1.0106752  0.52090392 0.602433708
#> 88       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 89       5 3.473535 1.0106752  1.51034151 0.130956304
#> 90       3 2.236768 0.7064182  1.08042568 0.279952664
#> 91       5 4.710303 1.2405813  0.23351712 0.815359874
#> 92       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 93       4 3.473535 1.0106752  0.52090392 0.602433708
#> 94       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 95       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 96       5 4.091919 1.1317511  0.80236794 0.422340153
#> 97       6 5.328687 1.3401523  0.50092302 0.616425301
#> 98       5 3.473535 1.0106752  1.51034151 0.130956304
#> 99       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 100      4 2.855152 0.8722689  1.31249497 0.189353181
plot(lsrq, sf = nc)

# Version boot
lsrq <- local.sp.runs.test(formula = formula, data = nc, listw = listw,
                           distr ="bootstrap", nsim = 399)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     SRQ     EP.i     SdP.i zseudo.value pseudo.value
#> 1     4 2.912281 0.8416451   1.29237295  0.196228020
#> 2     4 2.867168 0.8535470   1.32720529  0.184440782
#> 3     4 4.082707 1.1564443  -0.07151816  0.942985375
#> 4     3 2.250627 0.7245469   1.03426492  0.301012332
#> 5     4 3.433584 0.9667720   0.58588376  0.557953630
#> 6     4 2.837093 0.8745581   1.32970846  0.183614348
#> 7     3 2.802005 0.8787817   0.22530623  0.821741057
#> 8     5 4.092732 1.1425627   0.79406422  0.427158046
#> 9     4 3.463659 1.0040409   0.53418227  0.593215432
#> 10    4 2.794486 0.8926668   1.35046340  0.176867387
#> 11    2 3.493734 1.0121552  -1.47579576  0.139998730
#> 12    3 3.466165 1.0214942  -0.45635641  0.648133704
#> 13    5 4.070175 1.1028003   0.84314861  0.399145336
#> 14    2 3.421053 0.9889632  -1.43691159  0.150743116
#> 15    2 2.864662 0.8575584  -1.00828315  0.313318549
#> 16    4 4.686717 1.2914870  -0.53172567  0.594916012
#> 17    4 2.847118 0.8849299   1.30279492  0.192644787
#> 18    3 6.052632 1.5626729  -1.95346805  0.050764159
#> 19    3 3.503759 0.9793655  -0.51437326  0.606991052
#> 20    3 2.859649 0.8596779   0.16325984  0.870313853
#> 21    2 2.238095 0.7024382  -0.33895541  0.734643325
#> 22    3 4.090226 1.0759498  -1.01326803  0.310932155
#> 23    5 4.070175 1.1386705   0.81658789  0.414163979
#> 24    3 4.195489 1.1013376  -1.08548801  0.277705569
#> 25    5 4.674185 1.3048461   0.24969575  0.802822641
#> 26    6 4.145363 1.1878456   1.56134482  0.118442413
#> 27    6 4.724311 1.3577196   0.93958225  0.347431885
#> 28    4 4.042607 1.1189053  -0.03807875  0.969624892
#> 29    4 4.017544 1.1060332  -0.01586196  0.987344514
#> 30    3 4.102757 1.1306455  -0.97533392  0.329394651
#> 31    5 4.055138 1.0990939   0.85967371  0.389968929
#> 32    2 2.862155 0.8438643  -1.02167543  0.306934543
#> 33    6 4.150376 1.2185516   1.51788738  0.129042792
#> 34    4 4.686717 1.2173779  -0.56409499  0.572689489
#> 35    3 3.496241 0.9767966  -0.50802860  0.611433285
#> 36    6 4.681704 1.2527121   1.05235334  0.292637466
#> 37    6 4.741855 1.2323233   1.02095398  0.307276241
#> 38    3 2.824561 0.9129434   0.19216811  0.847610527
#> 39    6 6.486216 1.5068305  -0.32267434  0.746941886
#> 40    5 4.087719 1.1473476   0.79512144  0.426542865
#> 41    4 3.486216 1.0219626   0.50274293  0.615145021
#> 42    3 4.731830 1.2095784  -1.43176303  0.152211652
#> 43    4 4.721805 1.2381299  -0.58297964  0.559907004
#> 44    5 4.070175 1.0394663   0.89452113  0.371043129
#> 45    2 2.273183 0.6931522  -0.39411686  0.693494767
#> 46    4 4.764411 1.3467387  -0.56760159  0.570305526
#> 47    2 4.741855 1.2424759  -2.20676690  0.027330349
#> 48    2 5.997494 1.4309900  -2.79351618  0.005213842
#> 49    5 4.661654 1.1896996   0.28439604  0.776106892
#> 50    3 4.155388 1.0778327  -1.07195526  0.283740127
#> 51    6 5.385965 1.3585403   0.45198151  0.651282300
#> 52    4 4.225564 1.1644863  -0.19370251  0.846408828
#> 53    7 4.764411 1.2337941   1.81196280  0.069991945
#> 54    5 4.654135 1.2260476   0.28209726  0.777868934
#> 55    5 4.235589 1.1296091   0.67670404  0.498593753
#> 56    2 2.218045 0.7159877  -0.30453751  0.760718417
#> 57    3 4.681704 1.2243103  -1.37359313  0.169568030
#> 58    4 3.536341 1.0040409   0.46179309  0.644229709
#> 59    3 3.551378 1.0594119  -0.52045709  0.602745028
#> 60    1 2.922306 0.7966505  -2.41298519  0.015822462
#> 61    4 4.646617 1.2652814  -0.51104564  0.609319099
#> 62    5 4.644110 1.2655700   0.28120903  0.778550076
#> 63    6 5.421053 1.3197982   0.43866356  0.660905334
#> 64    2 3.491228 0.9996473  -1.49175422  0.135763590
#> 65    5 3.997494 1.1174692   0.89712205  0.369653793
#> 66    3 3.563910 0.9798476  -0.57550765  0.564948016
#> 67    8 6.022556 1.4184685   1.39406950  0.163296617
#> 68    3 3.992481 1.1765906  -0.84352298  0.398936021
#> 69    3 4.127820 1.1674837  -0.96602598  0.334031180
#> 70    5 4.676692 1.2453867   0.25960472  0.795168691
#> 71    4 3.949875 1.1615679   0.04315315  0.965579451
#> 72    3 3.526316 0.9503685  -0.55380183  0.579714478
#> 73    2 2.869674 0.8814433  -0.98664786  0.323815297
#> 74    5 4.681704 1.2883089   0.24706477  0.804858099
#> 75    3 2.894737 0.8617776   0.12214654  0.902782961
#> 76    4 2.854637 0.8904419   1.28628655  0.198343076
#> 77    1 2.268170 0.6425174  -1.97375279  0.048409859
#> 78    4 4.052632 1.1516808  -0.04569980  0.963549526
#> 79    5 5.318296 1.3399322  -0.23754616  0.812233113
#> 80    2 2.215539 0.7149932  -0.30145582  0.763066938
#> 81    2 2.819549 0.8782800  -0.93312943  0.350753145
#> 82    6 4.754386 1.2876782   0.96733333  0.333377428
#> 83    6 4.087719 1.1690414   1.63576813  0.101888125
#> 84    4 3.378446 1.0197234   0.60953186  0.542171964
#> 85    3 3.468672 1.0313654  -0.45441866  0.649527523
#> 86    4 3.521303 0.9994583   0.47895619  0.631969793
#> 87    4 3.456140 0.9886065   0.55012752  0.582231916
#> 88    3 4.644110 1.2635831  -1.30114926  0.193207368
#> 89    5 3.403509 0.9642284   1.65571895  0.097778748
#> 90    3 2.258145 0.6769927   1.09580886  0.273162431
#> 91    5 4.686717 1.2738574   0.24593272  0.805734312
#> 92    2 2.852130 0.8743636  -0.97457200  0.329772608
#> 93    4 3.478697 1.0316218   0.50532401  0.613331284
#> 94    3 4.115288 1.0921105  -1.02122286  0.307148866
#> 95    2 2.804511 0.8836196  -0.91047241  0.362573425
#> 96    5 4.155388 1.1412392   0.74008282  0.459249742
#> 97    6 5.413534 1.3605782   0.43104185  0.666437940
#> 98    5 3.523810 1.0436742   1.41441697  0.157239511
#> 99    2 2.285714 0.7149315  -0.39963868  0.689422662
#> 100   4 2.751880 0.8717165   1.43179610  0.152202183
plot(lsrq, sf = nc)


# Case 4: With isolated areas
data(provinces_spain)
listw <- spdep::poly2nb(as(provinces_spain,"Spatial"), queen = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> Warning: some observations have no neighbours;
#> if this seems unexpected, try increasing the snap argument.
#> Warning: neighbour object has 4 sub-graphs;
#> if this sub-graph count seems unexpected, try increasing the snap argument.
provinces_spain$Mal2Fml<- factor(provinces_spain$Mal2Fml > 100)
levels(provinces_spain$Mal2Fml) = c("men","woman")
plot(provinces_spain["Mal2Fml"])

formula <- ~ Mal2Fml
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>    runs.i      E.i     Std.i     z.value    p.value
#> 1       3 2.963265 1.2181954  0.03015501 0.97594343
#> 2       3 3.748571 1.4356803 -0.52140538 0.60208441
#> 3       3 2.177959 0.9361800  0.87807987 0.37990038
#> 4       3 1.785306 0.7491685  1.62138936 0.10493416
#> 5       4 3.355918 1.3328119  0.48325020 0.62891810
#> 6       3 3.355918 1.3328119 -0.26704320 0.78943590
#> 7       0 1.000000       NaN         NaN        NaN
#> 8       3 2.177959 0.9361800  0.87807987 0.37990038
#> 9       4 4.141224 1.5291733 -0.09235349 0.92641719
#> 10      2 2.570612 1.0881246 -0.52439971 0.60000056
#> 11      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 12      3 2.177959 0.9361800  0.87807987 0.37990038
#> 13      5 3.355918 1.3328119  1.23354359 0.21737302
#> 14      1 3.355918 1.3328119 -1.76762999 0.07712278
#> 15      1 1.785306 0.7491685 -1.04823694 0.29452945
#> 16      5 3.748571 1.4356803  0.87166242 0.38339257
#> 17      2 1.785306 0.7491685  0.28657621 0.77443683
#> 18      5 3.355918 1.3328119  1.23354359 0.21737302
#> 19      5 3.355918 1.3328119  1.23354359 0.21737302
#> 20      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 21      2 2.177959 0.9361800 -0.19009078 0.84923800
#> 22      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 23      1 3.748571 1.4356803 -1.91447317 0.05555972
#> 24      4 2.963265 1.2181954  0.85104136 0.39474638
#> 25      5 2.963265 1.2181954  1.67192771 0.09453858
#> 26      1 2.963265 1.2181954 -1.61161769 0.10704516
#> 27      2 2.963265 1.2181954 -0.79073134 0.42910078
#> 28      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 29      4 2.570612 1.0881246  1.31362503 0.18897242
#> 30      2 2.963265 1.2181954 -0.79073134 0.42910078
#> 31      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 32      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 33      3 2.570612 1.0881246  0.39461266 0.69312877
#> 34      0 1.000000       NaN         NaN        NaN
#> 35      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 36      3 2.570612 1.0881246  0.39461266 0.69312877
#> 37      0 1.000000       NaN         NaN        NaN
#> 38      3 2.963265 1.2181954  0.03015501 0.97594343
#> 39      3 3.355918 1.3328119 -0.26704320 0.78943590
#> 40      1 2.963265 1.2181954 -1.61161769 0.10704516
#> 41      5 2.963265 1.2181954  1.67192771 0.09453858
#> 42      5 3.355918 1.3328119  1.23354359 0.21737302
#> 43      4 3.355918 1.3328119  0.48325020 0.62891810
#> 44      4 2.963265 1.2181954  0.85104136 0.39474638
#> 45      5 3.748571 1.4356803  0.87166242 0.38339257
#> 46      3 2.570612 1.0881246  0.39461266 0.69312877
#> 47      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 48      8 4.141224 1.5291733  2.52343903 0.01162132
#> 49      5 2.963265 1.2181954  1.67192771 0.09453858
#> 50      1 2.177959 0.9361800 -1.25826142 0.20829723
plot(lsrq, sf = provinces_spain, sig = 0.1)


# Boots Version
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw,
                           distr ="bootstrap", nsim = 199)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>    SRQ     EP.i     SdP.i zseudo.value pseudo.value
#> 1    3 2.904523 1.2333455   0.07741334   0.93829473
#> 2    3 3.748744 1.3696516  -0.54666730   0.58460732
#> 3    3 2.120603 0.9241582   0.95156545   0.34131741
#> 4    3 1.768844 0.7432077   1.65654326   0.09761185
#> 5    4 3.296482 1.2900308   0.54534945   0.58551320
#> 6    3 3.487437 1.2667436  -0.38479546   0.70038896
#> 7    0 0.000000 0.0000000          NaN          NaN
#> 8    3 2.266332 0.9125512   0.80397503   0.42141140
#> 9    4 4.160804 1.5256300  -0.10540172   0.91605705
#> 10   2 2.623116 1.1297932  -0.55153065   0.58126996
#> 11   1 2.261307 0.9385462  -1.34389390   0.17898270
#> 12   3 2.211055 1.0128859   0.77890782   0.43603401
#> 13   5 3.467337 1.3362424   1.14699493   0.25138372
#> 14   1 3.457286 1.2897947  -1.90517640   0.05675714
#> 15   1 1.723618 0.7170330  -1.00918379   0.31288650
#> 16   5 3.814070 1.4179951   0.83634255   0.40296222
#> 17   2 1.824121 0.7681942   0.22895174   0.81890643
#> 18   5 3.195980 1.2700051   1.42048252   0.15546725
#> 19   5 3.552764 1.4688620   0.98527719   0.32448793
#> 20   1 2.221106 0.9163811  -1.33253024   0.18268601
#> 21   2 2.100503 0.8989049  -0.11180550   0.91097763
#> 22   1 2.567839 1.0797357  -1.45205833   0.14648539
#> 23   1 3.839196 1.5189947  -1.86912834   0.06160496
#> 24   4 3.005025 1.1827783   0.84121840   0.40022559
#> 25   5 2.919598 1.2364693   1.68253426   0.09246529
#> 26   1 2.869347 1.1472475  -1.62941887   0.10322438
#> 27   2 3.030151 1.2427956  -0.82889798   0.40716214
#> 28   1 2.633166 1.1464066  -1.42459567   0.15427411
#> 29   4 2.452261 1.0132867   1.52744402   0.12665064
#> 30   2 3.035176 1.2406291  -0.83439597   0.40405789
#> 31   1 2.603015 1.0580098  -1.51512304   0.12974125
#> 32   1 2.110553 0.9308621  -1.19303683   0.23285495
#> 33   3 2.547739 1.0232067   0.44200386   0.65848641
#> 34   0 0.000000 0.0000000          NaN          NaN
#> 35   1 2.125628 0.8985378  -1.25273320   0.21030282
#> 36   3 2.587940 1.1595259   0.35536964   0.72231269
#> 37   0 0.000000 0.0000000          NaN          NaN
#> 38   3 2.864322 1.2499226   0.10854944   0.91355987
#> 39   3 3.417085 1.4431691  -0.28900663   0.77257630
#> 40   1 2.974874 1.1825208  -1.67005468   0.09490855
#> 41   5 2.934673 1.1852433   1.74253384   0.08141508
#> 42   5 3.351759 1.3768961   1.19707015   0.23127922
#> 43   4 3.452261 1.3013134   0.42091220   0.67381919
#> 44   4 2.974874 1.1739478   0.87322932   0.38253809
#> 45   5 3.944724 1.4536474   0.72595073   0.46786897
#> 46   3 2.648241 1.1750282   0.29936199   0.76466386
#> 47   1 2.497487 1.0292410  -1.45494340   0.14568493
#> 48   8 4.130653 1.5995628   2.41900273   0.01556312
#> 49   5 2.984925 1.2491508   1.61315625   0.10671056
#> 50   1 2.251256 0.9832876  -1.27252322   0.20318728
plot(lsrq, sf = provinces_spain, sig = 0.10)


# Case 5: SRQ test based on a distance matrix (inverse distance)
# \donttest{
N <- 100
cx <- runif(N)
cy <- runif(N)
coor <- as.data.frame(cbind(cx,cy))
coor <- sf::st_as_sf(coor,coords = c("cx","cy"))
n = dim(coor)[1]
dis <- 1/matrix(as.numeric(sf::st_distance(coor,coor)), ncol = n, nrow = n)
diag(dis) <- 0
dis <- (dis < quantile(dis,.10))*dis
p <- c(1/6,3/6,2/6)
rho <- 0.5
fx <- dgp.spq(p = p, listw = dis, rho = rho)
lsrq <- local.sp.runs.test(fx = fx, listw = dis)
print(lsrq)
#>     runs.i       E.i     Std.i     z.value    p.value
#> 1        2  2.855152 0.8722689 -0.98037608 0.32690051
#> 2        4  4.091919 1.1317511 -0.08121856 0.93526814
#> 3        5  3.473535 1.0106752  1.51034151 0.13095630
#> 4        5  3.473535 1.0106752  1.51034151 0.13095630
#> 5       18 14.604444 2.3462098  1.44725143 0.14782652
#> 6       15 14.604444 2.3462098  0.16859343 0.86611645
#> 7       21 22.643434 2.9150932 -0.56376735 0.57291248
#> 8        3  2.236768 0.7064182  1.08042568 0.27995266
#> 9        4  3.473535 1.0106752  0.52090392 0.60243371
#> 10       0  1.000000       NaN         NaN        NaN
#> 11      21 22.025051 2.8765991 -0.35634111 0.72158513
#> 12       0  1.000000       NaN         NaN        NaN
#> 13       8 10.275758 1.9514092 -1.16621238 0.24352859
#> 14       0  1.000000       NaN         NaN        NaN
#> 15       0  1.000000       NaN         NaN        NaN
#> 16       0  1.000000       NaN         NaN        NaN
#> 17       6  5.328687 1.3401523  0.50092302 0.61642530
#> 18       4  3.473535 1.0106752  0.52090392 0.60243371
#> 19      18 17.696364 2.5846046  0.11747885 0.90648061
#> 20       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 21       5  3.473535 1.0106752  1.51034151 0.13095630
#> 22       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 23      25 23.261818 2.9528798  0.58863955 0.55610310
#> 24       8  7.183838 1.5998803  0.51013918 0.60995396
#> 25       8 10.275758 1.9514092 -1.16621238 0.24352859
#> 26       0  1.000000       NaN         NaN        NaN
#> 27       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 28       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 29       0  1.000000       NaN         NaN        NaN
#> 30      25 24.498586 3.0264361  0.16567808 0.86841029
#> 31       3  2.236768 0.7064182  1.08042568 0.27995266
#> 32       3  4.091919 1.1317511 -0.96480505 0.33464246
#> 33       3  2.855152 0.8722689  0.16605945 0.86811017
#> 34       8  9.038990 1.8199699 -0.57088300 0.56807895
#> 35       5  3.473535 1.0106752  1.51034151 0.13095630
#> 36       6  7.183838 1.5998803 -0.73995436 0.45932769
#> 37       7  8.420606 1.7500327 -0.81175974 0.41692951
#> 38       3  2.855152 0.8722689  0.16605945 0.86811017
#> 39       0  1.000000       NaN         NaN        NaN
#> 40       5  3.473535 1.0106752  1.51034151 0.13095630
#> 41       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 42       8  9.038990 1.8199699 -0.57088300 0.56807895
#> 43       7  6.565455 1.5186493  0.28613944 0.77477133
#> 44       7  9.038990 1.8199699 -1.12034263 0.26256778
#> 45       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 46       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 47       5  6.565455 1.5186493 -1.03082032 0.30262509
#> 48       5  7.183838 1.5998803 -1.36500113 0.17225270
#> 49      12 10.275758 1.9514092  0.88358834 0.37691847
#> 50       7  7.802222 1.6768193 -0.47841899 0.63235202
#> 51       4  3.473535 1.0106752  0.52090392 0.60243371
#> 52       8  6.565455 1.5186493  0.94461932 0.34485326
#> 53       4  4.710303 1.2405813 -0.57255663 0.56694493
#> 54       8  9.657374 1.8869954 -0.87831360 0.37977356
#> 55       5  7.802222 1.6768193 -1.67115332 0.09469140
#> 56       3  2.236768 0.7064182  1.08042568 0.27995266
#> 57       5  4.091919 1.1317511  0.80236794 0.42234015
#> 58       0  1.000000       NaN         NaN        NaN
#> 59       0  1.000000       NaN         NaN        NaN
#> 60       3  5.328687 1.3401523 -1.73762855 0.08227629
#> 61      10  8.420606 1.7500327  0.90249398 0.36679452
#> 62       7  7.802222 1.6768193 -0.47841899 0.63235202
#> 63       0  1.000000       NaN         NaN        NaN
#> 64      12 11.512525 2.0733657  0.23511277 0.81412121
#> 65      10 10.894141 2.0134619 -0.44408161 0.65698359
#> 66       8 10.275758 1.9514092 -1.16621238 0.24352859
#> 67       0  1.000000       NaN         NaN        NaN
#> 68       6  5.328687 1.3401523  0.50092302 0.61642530
#> 69       0  1.000000       NaN         NaN        NaN
#> 70       5  3.473535 1.0106752  1.51034151 0.13095630
#> 71       6  9.657374 1.8869954 -1.93819959 0.05259888
#> 72       5  3.473535 1.0106752  1.51034151 0.13095630
#> 73       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 74       4  2.855152 0.8722689  1.31249497 0.18935318
#> 75      14 16.459596 2.4927161 -0.98671322 0.32378325
#> 76       8  6.565455 1.5186493  0.94461932 0.34485326
#> 77       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 78      18 20.788283 2.7973712 -0.99675111 0.31888533
#> 79       6  5.947071 1.4323964  0.03695157 0.97052362
#> 80       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 81       6  7.802222 1.6768193 -1.07478616 0.28247048
#> 82      14 12.749293 2.1874260  0.57177115 0.56747702
#> 83       0  1.000000       NaN         NaN        NaN
#> 84       4  4.091919 1.1317511 -0.08121856 0.93526814
#> 85      17 17.696364 2.5846046 -0.26942754 0.78760070
#> 86       8  7.183838 1.5998803  0.51013918 0.60995396
#> 87       3  4.091919 1.1317511 -0.96480505 0.33464246
#> 88       0  1.000000       NaN         NaN        NaN
#> 89       0  1.000000       NaN         NaN        NaN
#> 90       4  3.473535 1.0106752  0.52090392 0.60243371
#> 91       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 92      13 11.512525 2.0733657  0.71742037 0.47311476
#> 93      17 17.696364 2.5846046 -0.26942754 0.78760070
#> 94       4  6.565455 1.5186493 -1.68930020 0.09116192
#> 95       6  6.565455 1.5186493 -0.37234044 0.70963939
#> 96       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 97      15 15.841212 2.4451048 -0.34403928 0.73081674
#> 98      16 21.406667 2.8373687 -1.90552133 0.05671234
#> 99       7  5.947071 1.4323964  0.73508234 0.46228935
#> 100      0  1.000000       NaN         NaN        NaN
plot(lsrq, coor = cbind(cx,cy), sig = 0.05)

lsrq <- local.sp.runs.test(fx = fx, listw = dis, data = )
print(lsrq)
#>     runs.i       E.i     Std.i     z.value    p.value
#> 1        2  2.855152 0.8722689 -0.98037608 0.32690051
#> 2        4  4.091919 1.1317511 -0.08121856 0.93526814
#> 3        5  3.473535 1.0106752  1.51034151 0.13095630
#> 4        5  3.473535 1.0106752  1.51034151 0.13095630
#> 5       18 14.604444 2.3462098  1.44725143 0.14782652
#> 6       15 14.604444 2.3462098  0.16859343 0.86611645
#> 7       21 22.643434 2.9150932 -0.56376735 0.57291248
#> 8        3  2.236768 0.7064182  1.08042568 0.27995266
#> 9        4  3.473535 1.0106752  0.52090392 0.60243371
#> 10       0  1.000000       NaN         NaN        NaN
#> 11      21 22.025051 2.8765991 -0.35634111 0.72158513
#> 12       0  1.000000       NaN         NaN        NaN
#> 13       8 10.275758 1.9514092 -1.16621238 0.24352859
#> 14       0  1.000000       NaN         NaN        NaN
#> 15       0  1.000000       NaN         NaN        NaN
#> 16       0  1.000000       NaN         NaN        NaN
#> 17       6  5.328687 1.3401523  0.50092302 0.61642530
#> 18       4  3.473535 1.0106752  0.52090392 0.60243371
#> 19      18 17.696364 2.5846046  0.11747885 0.90648061
#> 20       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 21       5  3.473535 1.0106752  1.51034151 0.13095630
#> 22       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 23      25 23.261818 2.9528798  0.58863955 0.55610310
#> 24       8  7.183838 1.5998803  0.51013918 0.60995396
#> 25       8 10.275758 1.9514092 -1.16621238 0.24352859
#> 26       0  1.000000       NaN         NaN        NaN
#> 27       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 28       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 29       0  1.000000       NaN         NaN        NaN
#> 30      25 24.498586 3.0264361  0.16567808 0.86841029
#> 31       3  2.236768 0.7064182  1.08042568 0.27995266
#> 32       3  4.091919 1.1317511 -0.96480505 0.33464246
#> 33       3  2.855152 0.8722689  0.16605945 0.86811017
#> 34       8  9.038990 1.8199699 -0.57088300 0.56807895
#> 35       5  3.473535 1.0106752  1.51034151 0.13095630
#> 36       6  7.183838 1.5998803 -0.73995436 0.45932769
#> 37       7  8.420606 1.7500327 -0.81175974 0.41692951
#> 38       3  2.855152 0.8722689  0.16605945 0.86811017
#> 39       0  1.000000       NaN         NaN        NaN
#> 40       5  3.473535 1.0106752  1.51034151 0.13095630
#> 41       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 42       8  9.038990 1.8199699 -0.57088300 0.56807895
#> 43       7  6.565455 1.5186493  0.28613944 0.77477133
#> 44       7  9.038990 1.8199699 -1.12034263 0.26256778
#> 45       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 46       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 47       5  6.565455 1.5186493 -1.03082032 0.30262509
#> 48       5  7.183838 1.5998803 -1.36500113 0.17225270
#> 49      12 10.275758 1.9514092  0.88358834 0.37691847
#> 50       7  7.802222 1.6768193 -0.47841899 0.63235202
#> 51       4  3.473535 1.0106752  0.52090392 0.60243371
#> 52       8  6.565455 1.5186493  0.94461932 0.34485326
#> 53       4  4.710303 1.2405813 -0.57255663 0.56694493
#> 54       8  9.657374 1.8869954 -0.87831360 0.37977356
#> 55       5  7.802222 1.6768193 -1.67115332 0.09469140
#> 56       3  2.236768 0.7064182  1.08042568 0.27995266
#> 57       5  4.091919 1.1317511  0.80236794 0.42234015
#> 58       0  1.000000       NaN         NaN        NaN
#> 59       0  1.000000       NaN         NaN        NaN
#> 60       3  5.328687 1.3401523 -1.73762855 0.08227629
#> 61      10  8.420606 1.7500327  0.90249398 0.36679452
#> 62       7  7.802222 1.6768193 -0.47841899 0.63235202
#> 63       0  1.000000       NaN         NaN        NaN
#> 64      12 11.512525 2.0733657  0.23511277 0.81412121
#> 65      10 10.894141 2.0134619 -0.44408161 0.65698359
#> 66       8 10.275758 1.9514092 -1.16621238 0.24352859
#> 67       0  1.000000       NaN         NaN        NaN
#> 68       6  5.328687 1.3401523  0.50092302 0.61642530
#> 69       0  1.000000       NaN         NaN        NaN
#> 70       5  3.473535 1.0106752  1.51034151 0.13095630
#> 71       6  9.657374 1.8869954 -1.93819959 0.05259888
#> 72       5  3.473535 1.0106752  1.51034151 0.13095630
#> 73       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 74       4  2.855152 0.8722689  1.31249497 0.18935318
#> 75      14 16.459596 2.4927161 -0.98671322 0.32378325
#> 76       8  6.565455 1.5186493  0.94461932 0.34485326
#> 77       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 78      18 20.788283 2.7973712 -0.99675111 0.31888533
#> 79       6  5.947071 1.4323964  0.03695157 0.97052362
#> 80       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 81       6  7.802222 1.6768193 -1.07478616 0.28247048
#> 82      14 12.749293 2.1874260  0.57177115 0.56747702
#> 83       0  1.000000       NaN         NaN        NaN
#> 84       4  4.091919 1.1317511 -0.08121856 0.93526814
#> 85      17 17.696364 2.5846046 -0.26942754 0.78760070
#> 86       8  7.183838 1.5998803  0.51013918 0.60995396
#> 87       3  4.091919 1.1317511 -0.96480505 0.33464246
#> 88       0  1.000000       NaN         NaN        NaN
#> 89       0  1.000000       NaN         NaN        NaN
#> 90       4  3.473535 1.0106752  0.52090392 0.60243371
#> 91       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 92      13 11.512525 2.0733657  0.71742037 0.47311476
#> 93      17 17.696364 2.5846046 -0.26942754 0.78760070
#> 94       4  6.565455 1.5186493 -1.68930020 0.09116192
#> 95       6  6.565455 1.5186493 -0.37234044 0.70963939
#> 96       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 97      15 15.841212 2.4451048 -0.34403928 0.73081674
#> 98      16 21.406667 2.8373687 -1.90552133 0.05671234
#> 99       7  5.947071 1.4323964  0.73508234 0.46228935
#> 100      0  1.000000       NaN         NaN        NaN
plot(lsrq, sf = coor)

# Version boots
lsrq <- local.sp.runs.test(fx = fx, listw = dis, data = coor,
                           distr ="bootstrap", nsim = 299)
#> Warning: style is M (missing); style should be set to a valid value
#> Warning: no-neighbour observations found, set zero.policy to TRUE;
#> this warning will soon become an error
#> Warning: neighbour object has 18 sub-graphs
print(lsrq)
#>     SRQ      EP.i     SdP.i zseudo.value pseudo.value
#> 1     2  2.812709 0.8737632  -0.93012506   0.35230634
#> 2     4  4.053512 1.1456715  -0.04670772   0.96274618
#> 3     5  3.632107 0.9788566   1.39743955   0.16228143
#> 4     5  3.555184 1.0064214   1.43559745   0.15111692
#> 5    18 14.668896 2.4123708   1.38084234   0.16732744
#> 6    15 14.779264 2.4118217   0.09152243   0.92707748
#> 7    21 22.642140 2.9936785  -0.54853602   0.58332391
#> 8     3  2.187291 0.6939617   1.17111503   0.24155254
#> 9     4  3.521739 1.0242180   0.46695223   0.64053406
#> 10    0  0.000000 0.0000000          NaN          NaN
#> 11   21 21.963211 2.6334167  -0.36576463   0.71454071
#> 12    0  0.000000 0.0000000          NaN          NaN
#> 13    8 10.173913 1.9907138  -1.09202692   0.27482127
#> 14    0  0.000000 0.0000000          NaN          NaN
#> 15    0  0.000000 0.0000000          NaN          NaN
#> 16    0  0.000000 0.0000000          NaN          NaN
#> 17    6  5.424749 1.3223135   0.43503363   0.66353802
#> 18    4  3.602007 1.0291699   0.38671295   0.69896873
#> 19   18 17.685619 2.5570328   0.12294769   0.90214852
#> 20    2  2.812709 0.8660481  -0.93841098   0.34803325
#> 21    5  3.535117 1.0303796   1.42169250   0.15511554
#> 22    2  2.217391 0.7301502  -0.29773504   0.76590540
#> 23   25 23.234114 3.0209626   0.58454424   0.55885421
#> 24    8  7.367893 1.6542925   0.38210112   0.70238636
#> 25    8 10.277592 2.0049937  -1.13595969   0.25597343
#> 26    0  0.000000 0.0000000          NaN          NaN
#> 27    3  3.585284 0.9874638  -0.59271468   0.55337212
#> 28    2  2.224080 0.6755227  -0.33171389   0.74010531
#> 29    0  0.000000 0.0000000          NaN          NaN
#> 30   25 24.491639 3.3068614   0.15372921   0.87782325
#> 31    3  2.220736 0.6937676   1.12323516   0.26133763
#> 32    3  4.086957 1.1581910  -0.93849502   0.34799007
#> 33    3  2.832776 0.8816527   0.18967116   0.84956682
#> 34    8  9.120401 1.8370402  -0.60989485   0.54193147
#> 35    5  3.531773 1.0530368   1.39427935   0.16323326
#> 36    6  7.086957 1.6381967  -0.66350795   0.50700529
#> 37    7  8.277592 1.7684406  -0.72243986   0.47002409
#> 38    3  2.949833 0.8978862   0.05587259   0.95544331
#> 39    0  0.000000 0.0000000          NaN          NaN
#> 40    5  3.518395 1.0044345   1.47506416   0.14019529
#> 41    1  1.658863 0.4748861  -1.38741238   0.16531605
#> 42    8  8.989967 1.8050729  -0.54843577   0.58339272
#> 43    7  6.397993 1.6380939   0.36750438   0.71324282
#> 44    7  8.829431 1.8702017  -0.97820008   0.32797538
#> 45    1  2.224080 0.6902646  -1.77334941   0.07617083
#> 46    2  2.809365 0.8594789  -0.94169218   0.34635026
#> 47    5  6.662207 1.4914555  -1.11448675   0.26507042
#> 48    5  7.133779 1.7210197  -1.23983430   0.21503669
#> 49   12 10.117057 1.7560089   1.07228567   0.28359174
#> 50    7  7.832776 1.7317009  -0.48090056   0.63058717
#> 51    4  3.521739 0.9772731   0.48938302   0.62457055
#> 52    8  6.424749 1.4712649   1.07067794   0.28431427
#> 53    4  4.785953 1.2562608  -0.62562897   0.53155833
#> 54    8  9.581940 1.8866739  -0.83848077   0.40176075
#> 55    5  7.909699 1.7728015  -1.64129996   0.10073516
#> 56    3  2.204013 0.7476028   1.06471856   0.28700331
#> 57    5  4.020067 1.1699246   0.83760367   0.40225333
#> 58    0  0.000000 0.0000000          NaN          NaN
#> 59    0  0.000000 0.0000000          NaN          NaN
#> 60    3  5.287625 1.3699363  -1.66987718   0.09494367
#> 61   10  8.458194 1.6990201   0.90746781   0.36415947
#> 62    7  7.709030 1.8150061  -0.39064889   0.69605679
#> 63    0  0.000000 0.0000000          NaN          NaN
#> 64   12 11.384615 2.1463010   0.28671869   0.77432773
#> 65   10 10.856187 2.0090534  -0.42616453   0.66998796
#> 66    8 10.351171 1.9696754  -1.19368429   0.23260149
#> 67    0  0.000000 0.0000000          NaN          NaN
#> 68    6  5.441472 1.3180799   0.42374397   0.67175254
#> 69    0  0.000000 0.0000000          NaN          NaN
#> 70    5  3.558528 1.0028914   1.43731575   0.15062830
#> 71    6  9.511706 1.8288415  -1.92018046   0.05483511
#> 72    5  3.377926 1.0965081   1.47930840   0.13905791
#> 73    2  2.240803 0.7204170  -0.33425456   0.73818748
#> 74    4  2.859532 0.8671877   1.31513420   0.18846481
#> 75   14 16.404682 2.4191861  -0.99400468   0.32022059
#> 76    8  6.458194 1.4426712   1.06871618   0.28519758
#> 77    3  3.625418 0.9519440  -0.65699039   0.51118710
#> 78   18 20.792642 2.5124815  -1.11150756   0.26634994
#> 79    6  5.909699 1.5067654   0.05993037   0.95221109
#> 80    2  2.856187 0.8914509  -0.96044243   0.33683259
#> 81    6  7.762542 1.7360571  -1.01525568   0.30998397
#> 82   14 12.789298 1.8999521   0.63722783   0.52397646
#> 83    0  0.000000 0.0000000          NaN          NaN
#> 84    4  4.103679 1.1697903  -0.08863036   0.92937568
#> 85   17 17.715719 2.3664575  -0.30244323   0.76231420
#> 86    8  7.210702 1.5691294   0.50301631   0.61495281
#> 87    3  4.073579 1.1386753  -0.94283119   0.34576725
#> 88    0  0.000000 0.0000000          NaN          NaN
#> 89    0  0.000000 0.0000000          NaN          NaN
#> 90    4  3.588629 1.0271504   0.40049755   0.68879009
#> 91    1  1.622074 0.4856820  -1.28082498   0.20025515
#> 92   13 11.311037 1.8209017   0.92754220   0.35364509
#> 93   17 17.591973 2.4795951  -0.23873787   0.81130885
#> 94    4  6.555184 1.5014975  -1.70175700   0.08880093
#> 95    6  6.474916 1.6101210  -0.29495696   0.76802676
#> 96    2  2.832776 0.8585120  -0.97002240   0.33203533
#> 97   15 15.829431 2.3475684  -0.35331514   0.72385220
#> 98   16 21.401338 2.7366758  -1.97368570   0.04841749
#> 99    7  5.862876 1.4987444   0.75871762   0.44802150
#> 100   0  0.000000 0.0000000          NaN          NaN
plot(lsrq, sf = coor)


# SRQ test based on inverse distance
data("FastFood.sf")
# sf::sf_use_s2(FALSE)
n = dim(FastFood.sf)[1]
dis <- 1000000/matrix(as.numeric(
          sf::st_distance(FastFood.sf, FastFood.sf)),
          ncol = n, nrow = n)
diag(dis) <- 0
dis <- (dis < quantile(dis,.01))*dis
formula <- ~ Type
lsrq <- local.sp.runs.test(formula = formula, data = FastFood.sf, listw = dis)
#> Warning: style is M (missing); style should be set to a valid value
#> Warning: no-neighbour observations found, set zero.policy to TRUE;
#> this warning will soon become an error
#> Warning: neighbour object has 436 sub-graphs
print(lsrq)
#>     runs.i        E.i      Std.i       z.value    p.value
#> 1       16  19.004428 2.44850757 -1.227045e+00 0.21980579
#> 2       30  31.674211 3.19588410 -5.238648e-01 0.60037261
#> 3        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 4        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 5        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 6        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 7       10  11.002460 1.82503944 -5.492814e-01 0.58281238
#> 8        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 9        2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 10       4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 11       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 12       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 13       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 14       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 15       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 16       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 17       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 18       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 19       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 20       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 21       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 22       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 23       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 24       8   9.001968 1.63237562 -6.138098e-01 0.53934104
#> 25       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 26       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 27       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 28       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 29       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 30       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 31       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 32       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 33      11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 34       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 35       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 36      14  15.003444 2.15939578 -4.646875e-01 0.64215528
#> 37       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 38       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 39      39  33.007872 3.26461537  1.835477e+00 0.06643499
#> 40       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 41       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 42       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 43       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 44       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 45       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 46       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 47       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 48       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 49       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 50       5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 51       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 52       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 53       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 54      16  17.670767 2.35608263 -7.091292e-01 0.47824433
#> 55       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 56       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 57       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 58       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 59       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 60       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 61       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 62      10   9.001968 1.63237562  6.113984e-01 0.54093584
#> 63       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 64      18  15.670275 2.21020923  1.054074e+00 0.29184882
#> 65       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 66       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 67      33  36.342026 3.43042252 -9.742315e-01 0.32994159
#> 68       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 69       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 70      94  87.021157 5.35156194  1.304076e+00 0.19220771
#> 71       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 72      21  17.670767 2.35608263  1.413038e+00 0.15764470
#> 73       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 74       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 75       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 76      32  35.008364 3.36508045 -8.939948e-01 0.37132467
#> 77      49  41.676671 3.68020424  1.989925e+00 0.04659925
#> 78       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 79       4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 80      46  37.675687 3.49454267  2.382089e+00 0.01721472
#> 81       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 82       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 83       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 84     188 177.043298 7.65503034  1.431307e+00 0.15234213
#> 85       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 86       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 87       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 88       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 89       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 90       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 91       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 92       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 93       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 94       4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 95       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 96       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 97       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 98       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 99       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 100      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 101      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 102      4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 103      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 104      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 105      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 106      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 107      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 108      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 109      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 110      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 111     21  20.338090 2.53756790  2.608444e-01 0.79421249
#> 112      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 113      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 114      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 115      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 116      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 117     19  21.004920 2.58094570 -7.768161e-01 0.43726726
#> 118      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 119      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 120      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 121     29  28.340058 3.01721207  2.187259e-01 0.82686360
#> 122      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 123      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 124      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 125      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 126      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 127      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 128      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 129     86  75.685036 4.98654707  2.068559e+00 0.03858754
#> 130      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 131      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 132      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 133      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 134      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 135      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 136      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 137     25  25.672735 2.86626456 -2.347079e-01 0.81443544
#> 138      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 139      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 140      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 141      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 142      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 143      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 144      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 145      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 146     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 147     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 148     15  12.336121 1.94289607  1.371086e+00 0.17034800
#> 149      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 150     30  28.340058 3.01721207  5.501577e-01 0.58221125
#> 151     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 152      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 153      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 154      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 155      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 156      6   7.668307 1.49015700 -1.119551e+00 0.26290515
#> 157      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 158      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 159      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 160      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 161      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 162      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 163      4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 164      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 165      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 166      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 167      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 168      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 169      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 170      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 171      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 172      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 173     15  12.336121 1.94289607  1.371086e+00 0.17034800
#> 174      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 175      7   7.668307 1.49015700 -4.484808e-01 0.65380626
#> 176      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 177      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 178      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 179      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 180     16  19.004428 2.44850757 -1.227045e+00 0.21980579
#> 181      4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 182      6   7.668307 1.49015700 -1.119551e+00 0.26290515
#> 183      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 184      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 185      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 186      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 187      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 188      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 189      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 190      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 191      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 192      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 193      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 194      7   7.668307 1.49015700 -4.484808e-01 0.65380626
#> 195      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 196     10  11.002460 1.82503944 -5.492814e-01 0.58281238
#> 197      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 198      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 199     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 200      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 201      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 202     36  35.008364 3.36508045  2.946841e-01 0.76823524
#> 203      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 204      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 205      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 206      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 207     45  37.675687 3.49454267  2.095929e+00 0.03608850
#> 208      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 209      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 210      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 211      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 212      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 213      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 214     25  25.672735 2.86626456 -2.347079e-01 0.81443544
#> 215      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 216      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 217      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 218      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 219      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 220      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 221      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 222      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 223      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 224      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 225     23  19.671259 2.49343546  1.335002e+00 0.18187572
#> 226      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 227     15  15.670275 2.21020923 -3.032631e-01 0.76168938
#> 228      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 229      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 230     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 231     33  36.342026 3.43042252 -9.742315e-01 0.32994159
#> 232     13  11.669291 1.88488922  7.059880e-01 0.48019559
#> 233      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 234      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 235      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 236      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 237      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 238      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 239      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 240      6   7.668307 1.49015700 -1.119551e+00 0.26290515
#> 241      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 242      6   5.000984 1.15429461  8.654774e-01 0.38677679
#> 243      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 244    188 177.043298 7.65503034  1.431307e+00 0.15234213
#> 245     33  36.342026 3.43042252 -9.742315e-01 0.32994159
#> 246     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 247      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 248      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 249      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 250      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 251      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 252      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 253      5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 254      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 255      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 256      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 257     49  41.676671 3.68020424  1.989925e+00 0.04659925
#> 258     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 259      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 260      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 261      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 262      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 263      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 264      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 265      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 266      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 267      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 268      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 269      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 270      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 271     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 272      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 273      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 274      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 275      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 276      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 277      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 278      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 279      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 280      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 281     24  23.005412 2.70691089  3.674254e-01 0.71330176
#> 282      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 283     15  12.336121 1.94289607  1.371086e+00 0.17034800
#> 284      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 285      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 286      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 287      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 288      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 289      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 290      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 291      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 292      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 293      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 294     16  17.670767 2.35608263 -7.091292e-01 0.47824433
#> 295      5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 296      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 297      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 298      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 299     17  15.670275 2.21020923  6.016286e-01 0.54742137
#> 300      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 301      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 302      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 303      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 304      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 305      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 306      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 307      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 308      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 309      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 310      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 311      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 312      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 313      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 314      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 315      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 316      5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 317     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 318      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 319      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 320      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 321      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 322     38  35.008364 3.36508045  8.890235e-01 0.37399046
#> 323     34  35.008364 3.36508045 -2.996554e-01 0.76444004
#> 324     33  30.340550 3.12564144  8.508494e-01 0.39485299
#> 325      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 326     26  23.672243 2.74761605  8.471915e-01 0.39688838
#> 327     36  32.341042 3.23043258  1.132653e+00 0.25736012
#> 328      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 329     24  24.339074 2.78772681 -1.216309e-01 0.90319136
#> 330      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 331     89  83.687004 5.24684304  1.012608e+00 0.31124734
#> 332      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 333      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 334      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 335      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 336      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 337     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 338      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 339      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 340     14  11.669291 1.88488922  1.236523e+00 0.21626416
#> 341     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 342      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 343      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 344      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 345      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 346      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 347      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 348      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 349      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 350      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 351     17  15.670275 2.21020923  6.016286e-01 0.54742137
#> 352     38  33.007872 3.26461537  1.529163e+00 0.12622415
#> 353      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 354     26  25.005904 2.82726846  3.516099e-01 0.72513081
#> 355     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 356      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 357      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 358     47  44.343994 3.79893944  6.991441e-01 0.48446198
#> 359     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 360      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 361      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 362      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 363      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 364      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 365      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 366      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 367      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 368      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 369      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 370      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 371      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 372      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 373      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 374      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 375      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 376      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 377      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 378      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 379      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 380      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 381      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 382      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 383      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 384      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 385      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 386      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 387      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 388      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 389      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 390      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 391      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 392      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 393      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 394      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 395      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 396      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 397      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 398      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 399      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 400      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 401      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 402     45  38.342518 3.52616541  1.888023e+00 0.05902283
#> 403      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 404     42  45.010825 3.82804764 -7.865170e-01 0.43156466
#> 405      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 406      8   9.001968 1.63237562 -6.138098e-01 0.53934104
#> 407      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 408      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 409      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 410      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 411      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 412      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 413      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 414      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 415      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 416     32  35.008364 3.36508045 -8.939948e-01 0.37132467
#> 417     36  35.008364 3.36508045  2.946841e-01 0.76823524
#> 418     31  31.674211 3.19588410 -2.109623e-01 0.83291669
#> 419      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 420      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 421      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 422      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 423      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 424      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 425      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 426      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 427      5   4.334153 1.05373221  6.318936e-01 0.52745642
#> 428     36  34.341534 3.33192879  4.977496e-01 0.61866054
#> 429      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 430     21  17.670767 2.35608263  1.413038e+00 0.15764470
#> 431     25  23.005412 2.70691089  7.368502e-01 0.46121348
#> 432      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 433      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 434      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 435      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 436      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 437      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 438     26  24.339074 2.78772681  5.957995e-01 0.55130915
#> 439      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 440      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 441      7   5.667815 1.24677180  1.068508e+00 0.28529156
#> 442      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 443      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 444      8   7.001476 1.41369228  7.063234e-01 0.47998705
#> 445      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 446      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 447      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 448     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 449      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 450      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 451      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 452      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 453      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 454     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 455      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 456     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 457      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 458     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 459     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 460      5   5.667815 1.24677180 -5.356351e-01 0.59221077
#> 461      3   4.334153 1.05373221 -1.266122e+00 0.20546946
#> 462      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 463     20  20.338090 2.53756790 -1.332337e-01 0.89400855
#> 464     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 465     18  14.336614 2.10735730  1.738379e+00 0.08214399
#> 466     44  37.675687 3.49454267  1.809768e+00 0.07033171
#> 467     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 468     31  28.340058 3.01721207  8.815894e-01 0.37799887
#> 469     46  37.675687 3.49454267  2.382089e+00 0.01721472
#> 470      9   9.001968 1.63237562 -1.205669e-03 0.99903802
#> 471     18  19.671259 2.49343546 -6.702636e-01 0.50268980
#> 472      9   9.001968 1.63237562 -1.205669e-03 0.99903802
#> 473      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 474      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 475      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 476      7   8.335137 1.56288494 -8.542775e-01 0.39295125
#> 477      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 478      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 479      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 480      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 481      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 482      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 483      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 484      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 485      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 486      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 487      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 488      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 489      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 490      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 491      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 492      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 493      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 494      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 495      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 496      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 497      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 498      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 499      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 500      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 501      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 502      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 503      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 504      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 505      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 506      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 507      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 508      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 509      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 510      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 511      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 512      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 513      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 514      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 515      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 516      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 517      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 518      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 519      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 520      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 521      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 522      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 523      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 524      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 525      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 526      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 527      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 528      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 529      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 530      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 531      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 532      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 533      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 534      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 535      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 536      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 537      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 538      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 539      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 540      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 541      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 542      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 543      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 544      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 545      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 546      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 547      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 548      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 549      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 550      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 551      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 552      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 553      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 554      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 555      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 556      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 557      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 558     11  10.335629 1.76315909  3.768069e-01 0.70631710
#> 559      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 560      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 561      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 562      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 563      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 564      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 565      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 566      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 567     93  87.021157 5.35156194  1.117215e+00 0.26390260
#> 568      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 569      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 570      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 571      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 572      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 573     76  73.684544 4.91932012  4.706863e-01 0.63786480
#> 574      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 575      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 576      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 577      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 578      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 579     17  17.670767 2.35608263 -2.846958e-01 0.77587719
#> 580      9  11.002460 1.82503944 -1.097215e+00 0.27254754
#> 581      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 582      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 583      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 584      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 585      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 586      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 587      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 588      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 589      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 590      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 591      4   5.667815 1.24677180 -1.337706e+00 0.18099214
#> 592      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 593      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 594      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 595      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 596      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 597      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 598      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 599      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 600      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 601      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 602      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 603      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 604      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 605      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 606      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 607      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 608      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 609      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 610      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 611      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 612      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 613      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 614      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 615     45  36.342026 3.43042252  2.523880e+00 0.01160676
#> 616      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 617      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 618      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 619      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 620      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 621      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 622      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 623      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 624      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 625      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 626     45  42.343502 3.71024441  7.159901e-01 0.47399748
#> 627      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 628      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 629      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 630      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 631      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 632      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 633      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 634      5   4.334153 1.05373221  6.318936e-01 0.52745642
#> 635      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 636      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 637      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 638      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 639      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 640      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 641     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 642      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 643      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 644     28  26.339566 2.90473707  5.716298e-01 0.56757279
#> 645      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 646      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 647      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 648      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 649      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 650      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 651      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 652      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 653      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 654      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 655      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 656      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 657      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 658      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 659      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 660      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 661      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 662      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 663      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 664      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 665      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 666      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 667     32  31.007380 3.16095794  3.140249e-01 0.75350210
#> 668      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 669      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 670      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 671      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 672     17  17.003936 2.30848272 -1.705106e-03 0.99863952
#> 673      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 674      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 675     15  19.004428 2.44850757 -1.635457e+00 0.10195333
#> 676      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 677      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 678      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 679     20  17.670767 2.35608263  9.886042e-01 0.32285684
#> 680      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 681     46  39.009348 3.55750697  1.965042e+00 0.04940935
#> 682      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 683      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 684      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 685      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 686     14  12.336121 1.94289607  8.563909e-01 0.39178159
#> 687     25  24.339074 2.78772681  2.370843e-01 0.81259136
#> 688      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 689      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 690      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 691      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 692     39  36.342026 3.43042252  7.748241e-01 0.43844358
#> 693     41  34.341534 3.33192879  1.998382e+00 0.04567527
#> 694      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 695      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 696      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 697      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 698      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 699      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 700      9   9.001968 1.63237562 -1.205669e-03 0.99903802
#> 701      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 702     75  73.684544 4.91932012  2.674061e-01 0.78915648
#> 703      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 704      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 705      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 706      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 707     17  20.338090 2.53756790 -1.315468e+00 0.18835264
#> 708      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 709      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 710      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 711      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 712      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 713      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 714      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 715     21  20.338090 2.53756790  2.608444e-01 0.79421249
#> 716      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 717      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 718    226 223.721446 8.60988206  2.646441e-01 0.79128365
#> 719     17  19.004428 2.44850757 -8.186326e-01 0.41299603
#> 720     85  77.018697 5.03086568  1.586467e+00 0.11263338
#> 721      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 722      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 723      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 724     29  25.672735 2.86626456  1.160837e+00 0.24570833
#> 725     26  25.672735 2.86626456  1.141782e-01 0.90909651
#> 726      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 727     47  44.343994 3.79893944  6.991441e-01 0.48446198
#> 728      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 729      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 730      9   9.668799 1.69902630 -3.936365e-01 0.69384942
#> 731      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 732      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 733      5   4.334153 1.05373221  6.318936e-01 0.52745642
#> 734      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 735      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 736      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 737      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 738      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 739     51  41.676671 3.68020424  2.533373e+00 0.01129708
#> 740      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 741      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 742      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 743      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 744      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 745      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 746     33  35.008364 3.36508045 -5.968251e-01 0.55062417
#> 747      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 748      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 749      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 750      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 751      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 752      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 753      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 754     32  31.674211 3.19588410  1.019402e-01 0.91880417
#> 755     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 756      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 757      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 758      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 759      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 760      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 761      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 762      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 763      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 764      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 765      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 766      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 767      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 768      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 769      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 770      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 771      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 772     18  14.336614 2.10735730  1.738379e+00 0.08214399
#> 773      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 774      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 775      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 776      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 777      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 778      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 779      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 780      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 781      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 782      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 783      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 784      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 785      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 786     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 787      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 788      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 789      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 790      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 791      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 792      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 793      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 794      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 795      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 796      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 797      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 798      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 799      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 800      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 801      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 802      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 803      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 804     36  34.341534 3.33192879  4.977496e-01 0.61866054
#> 805      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 806      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 807      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 808      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 809      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 810      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 811      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 812      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 813      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 814      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 815      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 816      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 817      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 818     23  19.671259 2.49343546  1.335002e+00 0.18187572
#> 819      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 820      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 821      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 822     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 823      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 824      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 825      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 826      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 827      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 828      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 829      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 830      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 831      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 832      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 833      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 834      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 835      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 836      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 837      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 838      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 839     19  21.004920 2.58094570 -7.768161e-01 0.43726726
#> 840      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 841      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 842      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 843      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 844      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 845      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 846      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 847      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 848      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 849      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 850      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 851      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 852      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 853      7   7.668307 1.49015700 -4.484808e-01 0.65380626
#> 854      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 855      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 856      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 857      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 858      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 859      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 860      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 861     27  25.005904 2.82726846  7.053082e-01 0.48061845
#> 862      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 863     25  23.672243 2.74761605  4.832397e-01 0.62892558
#> 864      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 865      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 866      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 867      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 868      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 869      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 870      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 871     19  17.003936 2.30848272  8.646648e-01 0.38722279
#> 872      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 873      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 874     22  20.338090 2.53756790  6.549225e-01 0.51251763
#> 875      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 876      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 877     14  16.337106 2.25988030 -1.034172e+00 0.30105564
# plot(lsrq, sf = FastFood.sf)
# }