Skip to contents

This function calculates the local spatial runs tests for all localizations.

Usage

local.sp.runs.test(formula = NULL, data = NULL, fx = NULL,
distr = "asymptotic", listw = listw, alternative = "two.sided" , nsim = NULL,
control = list())

Arguments

formula

An (optional) formula with the factor included in data

data

An (optional) data frame or a sf object containing the variable to testing for.

fx

An (optional) factor of observations with the same length as the neighbors list in listw

distr

a character string specifying the distribution "asymptotic" (default) or "bootstrap"

listw

A neighbourhood list (an object type knn or nb) or a W matrix that indicates the order of the elements in each $m_i-environment$ (for example of inverse distance). To calculate the number of runs in each $m_i-environment$, an order must be established, for example from the nearest neighbour to the furthest one.

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

nsim

Default value is NULL to obtain the asymptotic version of the local test. For the bootstrap version nsim is the number of permutations to obtain the pseudo-value.

control

Optional argument. See Control Argument section.

Value

The output is an object of the class localsrq

local.SRQ A matrix with

runs.inumber of runs in the localization 'i'.
E.iexpectation of local runs statistic in the localization 'i'.
Sd.istandard deviate of local runs statistic in the localization 'i'.
z.valuestandard value of local runs statistic (only for asymptotic version).
p.valuep-value of local local runs statistic (only for asymptotic version).
zseudo.valuestandard value of local runs statistic (only for boots version).
pseudo.valuep-value of local runs statistic (only for boots version).

MeanNeig Mean of run.i
MaxNeig Maximum of run.i
listw the object listw
alternative a character string describing the alternative hypothesis

Details

The object listw can be the class:

  • knn: Objects of the class knn that consider the neighbours in order of proximity.

  • nb: If the neighbours are obtained from an sf object, the code internally will call the function nb2nb_order it will order them in order of proximity of the centroids.

  • matrix: If a object of matrix class based in the inverse of the distance in introduced as argument, the function nb2nb_order will also be called internally to transform the object the class matrix to a matrix of the class nb with ordered neighbours.

Control arguments

seedinitNumerical value for the seed in boot version. Default value seedinit = 123

See also

Author

Fernando Lópezfernando.lopez@upct.es
Román Mínguezroman.minguez@uclm.es
Antonio Páezpaezha@gmail.com
Manuel Ruizmanuel.ruiz@upct.es

@references

  • Ruiz, M., López, F., and Páez, A. (2021). A test for global and local homogeneity of categorical data based on spatial runs. Working paper.

Examples


# Case 1: Local spatial runs test based on knn
library(lwgeom)
N <- 100
cx <- runif(N)
cy <- runif(N)
x <- cbind(cx,cy)
listw <- spdep::knearneigh(cbind(cx,cy), k = 10)
p <- c(1/6,3/6,2/6)
rho <- 0.5
fx <- dgp.spq(p = p, listw = listw, rho = rho)

# Asymtotic version
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "less")
print(lsrq)
#>     runs.i      E.i   Std.i    z.value     p.value
#> 1        6 7.183838 1.59988 -0.7399544 0.229663845
#> 2        8 7.183838 1.59988  0.5101392 0.695023022
#> 3        4 7.183838 1.59988 -1.9900479 0.023292830
#> 4        8 7.183838 1.59988  0.5101392 0.695023022
#> 5        5 7.183838 1.59988 -1.3650011 0.086126348
#> 6        9 7.183838 1.59988  1.1351860 0.871851293
#> 7        7 7.183838 1.59988 -0.1149076 0.454259185
#> 8        7 7.183838 1.59988 -0.1149076 0.454259185
#> 9        4 7.183838 1.59988 -1.9900479 0.023292830
#> 10       6 7.183838 1.59988 -0.7399544 0.229663845
#> 11       6 7.183838 1.59988 -0.7399544 0.229663845
#> 12       5 7.183838 1.59988 -1.3650011 0.086126348
#> 13       9 7.183838 1.59988  1.1351860 0.871851293
#> 14       7 7.183838 1.59988 -0.1149076 0.454259185
#> 15       7 7.183838 1.59988 -0.1149076 0.454259185
#> 16       7 7.183838 1.59988 -0.1149076 0.454259185
#> 17       8 7.183838 1.59988  0.5101392 0.695023022
#> 18       5 7.183838 1.59988 -1.3650011 0.086126348
#> 19       7 7.183838 1.59988 -0.1149076 0.454259185
#> 20       5 7.183838 1.59988 -1.3650011 0.086126348
#> 21       5 7.183838 1.59988 -1.3650011 0.086126348
#> 22       7 7.183838 1.59988 -0.1149076 0.454259185
#> 23       7 7.183838 1.59988 -0.1149076 0.454259185
#> 24       9 7.183838 1.59988  1.1351860 0.871851293
#> 25       7 7.183838 1.59988 -0.1149076 0.454259185
#> 26       5 7.183838 1.59988 -1.3650011 0.086126348
#> 27       5 7.183838 1.59988 -1.3650011 0.086126348
#> 28       7 7.183838 1.59988 -0.1149076 0.454259185
#> 29       6 7.183838 1.59988 -0.7399544 0.229663845
#> 30       7 7.183838 1.59988 -0.1149076 0.454259185
#> 31       7 7.183838 1.59988 -0.1149076 0.454259185
#> 32       7 7.183838 1.59988 -0.1149076 0.454259185
#> 33       8 7.183838 1.59988  0.5101392 0.695023022
#> 34       6 7.183838 1.59988 -0.7399544 0.229663845
#> 35       6 7.183838 1.59988 -0.7399544 0.229663845
#> 36       8 7.183838 1.59988  0.5101392 0.695023022
#> 37       7 7.183838 1.59988 -0.1149076 0.454259185
#> 38       8 7.183838 1.59988  0.5101392 0.695023022
#> 39       7 7.183838 1.59988 -0.1149076 0.454259185
#> 40       6 7.183838 1.59988 -0.7399544 0.229663845
#> 41       6 7.183838 1.59988 -0.7399544 0.229663845
#> 42       8 7.183838 1.59988  0.5101392 0.695023022
#> 43       5 7.183838 1.59988 -1.3650011 0.086126348
#> 44       8 7.183838 1.59988  0.5101392 0.695023022
#> 45       4 7.183838 1.59988 -1.9900479 0.023292830
#> 46       7 7.183838 1.59988 -0.1149076 0.454259185
#> 47      11 7.183838 1.59988  2.3852795 0.991466925
#> 48       8 7.183838 1.59988  0.5101392 0.695023022
#> 49       5 7.183838 1.59988 -1.3650011 0.086126348
#> 50       4 7.183838 1.59988 -1.9900479 0.023292830
#> 51       7 7.183838 1.59988 -0.1149076 0.454259185
#> 52       7 7.183838 1.59988 -0.1149076 0.454259185
#> 53       7 7.183838 1.59988 -0.1149076 0.454259185
#> 54       8 7.183838 1.59988  0.5101392 0.695023022
#> 55       8 7.183838 1.59988  0.5101392 0.695023022
#> 56       6 7.183838 1.59988 -0.7399544 0.229663845
#> 57       6 7.183838 1.59988 -0.7399544 0.229663845
#> 58       5 7.183838 1.59988 -1.3650011 0.086126348
#> 59       9 7.183838 1.59988  1.1351860 0.871851293
#> 60       7 7.183838 1.59988 -0.1149076 0.454259185
#> 61       9 7.183838 1.59988  1.1351860 0.871851293
#> 62       7 7.183838 1.59988 -0.1149076 0.454259185
#> 63       5 7.183838 1.59988 -1.3650011 0.086126348
#> 64       9 7.183838 1.59988  1.1351860 0.871851293
#> 65       5 7.183838 1.59988 -1.3650011 0.086126348
#> 66       8 7.183838 1.59988  0.5101392 0.695023022
#> 67       6 7.183838 1.59988 -0.7399544 0.229663845
#> 68       7 7.183838 1.59988 -0.1149076 0.454259185
#> 69       5 7.183838 1.59988 -1.3650011 0.086126348
#> 70       5 7.183838 1.59988 -1.3650011 0.086126348
#> 71       9 7.183838 1.59988  1.1351860 0.871851293
#> 72      10 7.183838 1.59988  1.7602327 0.960815822
#> 73       7 7.183838 1.59988 -0.1149076 0.454259185
#> 74      10 7.183838 1.59988  1.7602327 0.960815822
#> 75       6 7.183838 1.59988 -0.7399544 0.229663845
#> 76       7 7.183838 1.59988 -0.1149076 0.454259185
#> 77       4 7.183838 1.59988 -1.9900479 0.023292830
#> 78       6 7.183838 1.59988 -0.7399544 0.229663845
#> 79       5 7.183838 1.59988 -1.3650011 0.086126348
#> 80       6 7.183838 1.59988 -0.7399544 0.229663845
#> 81      10 7.183838 1.59988  1.7602327 0.960815822
#> 82       4 7.183838 1.59988 -1.9900479 0.023292830
#> 83       3 7.183838 1.59988 -2.6150947 0.004460136
#> 84       8 7.183838 1.59988  0.5101392 0.695023022
#> 85       5 7.183838 1.59988 -1.3650011 0.086126348
#> 86       7 7.183838 1.59988 -0.1149076 0.454259185
#> 87       8 7.183838 1.59988  0.5101392 0.695023022
#> 88       9 7.183838 1.59988  1.1351860 0.871851293
#> 89       7 7.183838 1.59988 -0.1149076 0.454259185
#> 90       5 7.183838 1.59988 -1.3650011 0.086126348
#> 91       8 7.183838 1.59988  0.5101392 0.695023022
#> 92       5 7.183838 1.59988 -1.3650011 0.086126348
#> 93       8 7.183838 1.59988  0.5101392 0.695023022
#> 94       6 7.183838 1.59988 -0.7399544 0.229663845
#> 95       8 7.183838 1.59988  0.5101392 0.695023022
#> 96       3 7.183838 1.59988 -2.6150947 0.004460136
#> 97       7 7.183838 1.59988 -0.1149076 0.454259185
#> 98       6 7.183838 1.59988 -0.7399544 0.229663845
#> 99       5 7.183838 1.59988 -1.3650011 0.086126348
#> 100      6 7.183838 1.59988 -0.7399544 0.229663845
plot(lsrq, sig = 0.05)

# Asymtotic version
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "two.sided",
                           distr ="bootstrap", nsim = 399)
print(lsrq)
#>     SRQ     EP.i    SdP.i zseudo.value pseudo.value
#> 1     6 7.197995 1.600376  -0.74857115  0.454115727
#> 2     8 7.080201 1.631531   0.56376464  0.572914316
#> 3     4 7.250627 1.651052  -1.96882125  0.048973622
#> 4     8 7.170426 1.685298   0.49224174  0.622548457
#> 5     5 7.263158 1.573468  -1.43832514  0.150341823
#> 6     9 7.298246 1.459253   1.16618195  0.243540890
#> 7     7 7.130326 1.537817  -0.08474727  0.932462317
#> 8     7 7.150376 1.573155  -0.09558874  0.923847206
#> 9     4 7.160401 1.600671  -1.97442302  0.048333663
#> 10    6 7.115288 1.659976  -0.67187019  0.501666337
#> 11    6 7.135338 1.582482  -0.71744137  0.473101802
#> 12    5 7.223058 1.611164  -1.37978372  0.167653245
#> 13    9 7.243108 1.603560   1.09562016  0.273245033
#> 14    7 7.215539 1.584681  -0.13601399  0.891810220
#> 15    7 7.263158 1.648334  -0.15965080  0.873156160
#> 16    7 7.228070 1.554896  -0.14667870  0.883385629
#> 17    8 7.125313 1.552866   0.56327250  0.573249339
#> 18    5 7.210526 1.530523  -1.44429433  0.148656201
#> 19    7 7.135338 1.542278  -0.08775222  0.930073615
#> 20    5 7.055138 1.647891  -1.24713206  0.212349080
#> 21    5 7.200501 1.548187  -1.42134039  0.155217828
#> 22    7 7.406015 1.550025  -0.26194100  0.793366930
#> 23    7 7.293233 1.529190  -0.19175715  0.847932434
#> 24    9 7.303258 1.612066   1.05252601  0.292558284
#> 25    7 7.187970 1.555427  -0.12084781  0.903811577
#> 26    5 7.070175 1.636606  -1.26491965  0.205900134
#> 27    5 7.130326 1.566951  -1.35953600  0.173976802
#> 28    7 7.165414 1.632800  -0.10130665  0.919307037
#> 29    6 7.155388 1.647570  -0.70126817  0.483135672
#> 30    7 7.085213 1.672346  -0.05095419  0.959362022
#> 31    7 7.082707 1.649022  -0.05015505  0.959998834
#> 32    7 7.107769 1.622987  -0.06640192  0.947057840
#> 33    8 7.077694 1.553559   0.59367272  0.552731031
#> 34    6 7.150376 1.626552  -0.70724810  0.479412310
#> 35    6 7.290727 1.627555  -0.79304672  0.427750603
#> 36    8 7.017544 1.603135   0.61283415  0.539986006
#> 37    7 7.253133 1.639213  -0.15442340  0.877275906
#> 38    8 7.260652 1.654059   0.44699041  0.654881983
#> 39    7 7.358396 1.570575  -0.22819407  0.819495368
#> 40    6 7.215539 1.547785  -0.78534106  0.432253625
#> 41    6 7.243108 1.612933  -0.77071240  0.440877420
#> 42    8 7.165414 1.609553   0.51852073  0.604095002
#> 43    5 7.190476 1.639282  -1.33624116  0.181470462
#> 44    8 7.092732 1.598970   0.56740779  0.570437159
#> 45    4 7.140351 1.585218  -1.98102172  0.047588838
#> 46    7 7.177945 1.535481  -0.11588864  0.907740797
#> 47   11 7.135338 1.621690   2.38310741  0.017167184
#> 48    8 7.177945 1.577453   0.52112828  0.602277412
#> 49    5 7.190476 1.645402  -1.33127150  0.183099692
#> 50    4 7.240602 1.512845  -2.14205825  0.032188795
#> 51    7 7.335840 1.629654  -0.20608029  0.836728193
#> 52    7 7.268170 1.507357  -0.17790771  0.858795456
#> 53    7 7.348371 1.525805  -0.22831940  0.819397944
#> 54    8 7.253133 1.555856   0.48003623  0.631201633
#> 55    8 7.005013 1.569167   0.63408624  0.526024541
#> 56    6 7.195489 1.635621  -0.73090816  0.464835250
#> 57    6 7.270677 1.499386  -0.84746475  0.396736130
#> 58    5 7.092732 1.554349  -1.34637149  0.178182741
#> 59    9 7.177945 1.519030   1.19948597  0.230339036
#> 60    7 6.979950 1.644115   0.01219509  0.990269970
#> 61    9 7.218045 1.664007   1.07088175  0.284222602
#> 62    7 7.223058 1.606479  -0.13884881  0.889569623
#> 63    5 7.090226 1.629465  -1.28276817  0.199573307
#> 64    9 7.152882 1.534915   1.20340039  0.228821417
#> 65    5 7.253133 1.611387  -1.39825714  0.162035863
#> 66    8 7.240602 1.651025   0.45995566  0.645548051
#> 67    6 7.290727 1.688176  -0.76456877  0.444528369
#> 68    7 7.172932 1.544212  -0.11198739  0.910833401
#> 69    5 7.127820 1.530659  -1.39013279  0.164488558
#> 70    5 7.002506 1.757252  -1.13956715  0.254466678
#> 71    9 7.117794 1.643828   1.14501376  0.252203456
#> 72   10 7.213033 1.593716   1.74872290  0.080338929
#> 73    7 7.192982 1.596274  -0.12089556  0.903773763
#> 74   10 7.228070 1.556511   1.78086062  0.074935223
#> 75    6 7.305764 1.552026  -0.84132877  0.400163780
#> 76    7 7.037594 1.546950  -0.02430200  0.980611720
#> 77    4 7.105263 1.608379  -1.93067921  0.053522736
#> 78    6 7.263158 1.612894  -0.78316220  0.433531867
#> 79    5 7.320802 1.596901  -1.45331585  0.146136078
#> 80    6 7.265664 1.605455  -0.78835221  0.430490717
#> 81   10 7.235589 1.668399   1.65692467  0.097534707
#> 82    4 7.278195 1.580440  -2.07423001  0.038057955
#> 83    3 7.055138 1.543984  -2.62641169  0.008629038
#> 84    8 7.345865 1.596377   0.40976250  0.681980176
#> 85    5 7.105263 1.608379  -1.30893506  0.190556350
#> 86    7 7.225564 1.637883  -0.13771672  0.890464302
#> 87    8 7.220551 1.658382   0.47000556  0.638351043
#> 88    9 7.187970 1.635736   1.10777629  0.267958444
#> 89    7 7.162907 1.563088  -0.10422144  0.916993622
#> 90    5 7.102757 1.621764  -1.29658636  0.194773549
#> 91    8 7.208020 1.592803   0.49722409  0.619031036
#> 92    5 7.223058 1.598639  -1.39059356  0.164348711
#> 93    8 7.238095 1.677804   0.45410822  0.649750936
#> 94    6 7.095238 1.500738  -0.72979985  0.465512538
#> 95    8 7.218045 1.628908   0.48004847  0.631192927
#> 96    3 7.270677 1.695965  -2.51813898  0.011797676
#> 97    7 7.152882 1.630176  -0.09378265  0.925281810
#> 98    6 7.110276 1.579667  -0.70285447  0.482146450
#> 99    5 7.127820 1.662837  -1.27963178  0.200674669
#> 100   6 7.182957 1.663716  -0.71103337  0.477063560
plot(lsrq, sig = 0.1)

# \donttest{
# Case 2:Fastfood example. sf (points)
library(lwgeom)
data("FastFood.sf")
sf::sf_use_s2(FALSE)
x <- sf::st_coordinates(sf::st_centroid(FastFood.sf))
#> Warning: st_centroid assumes attributes are constant over geometries of x
#> Warning: bounding box has potentially an invalid value range for longlat data
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
listw <- spdep::knearneigh(x, k = 10)
formula <- ~ Type
lsrq <- local.sp.runs.test(formula = formula, data = FastFood.sf, listw = listw)
print(lsrq)
#>     runs.i      E.i    Std.i    z.value    p.value
#> 1        8 7.668307 1.490157  0.2225895 0.82385504
#> 2        9 7.668307 1.490157  0.8936597 0.37150400
#> 3        9 7.668307 1.490157  0.8936597 0.37150400
#> 4        8 7.668307 1.490157  0.2225895 0.82385504
#> 5       10 7.668307 1.490157  1.5647299 0.11764625
#> 6        8 7.668307 1.490157  0.2225895 0.82385504
#> 7        8 7.668307 1.490157  0.2225895 0.82385504
#> 8        7 7.668307 1.490157 -0.4484808 0.65380626
#> 9        7 7.668307 1.490157 -0.4484808 0.65380626
#> 10       7 7.668307 1.490157 -0.4484808 0.65380626
#> 11       7 7.668307 1.490157 -0.4484808 0.65380626
#> 12       8 7.668307 1.490157  0.2225895 0.82385504
#> 13       9 7.668307 1.490157  0.8936597 0.37150400
#> 14       7 7.668307 1.490157 -0.4484808 0.65380626
#> 15      10 7.668307 1.490157  1.5647299 0.11764625
#> 16       9 7.668307 1.490157  0.8936597 0.37150400
#> 17       7 7.668307 1.490157 -0.4484808 0.65380626
#> 18       9 7.668307 1.490157  0.8936597 0.37150400
#> 19      10 7.668307 1.490157  1.5647299 0.11764625
#> 20       9 7.668307 1.490157  0.8936597 0.37150400
#> 21       9 7.668307 1.490157  0.8936597 0.37150400
#> 22      10 7.668307 1.490157  1.5647299 0.11764625
#> 23       7 7.668307 1.490157 -0.4484808 0.65380626
#> 24       6 7.668307 1.490157 -1.1195510 0.26290515
#> 25       9 7.668307 1.490157  0.8936597 0.37150400
#> 26       9 7.668307 1.490157  0.8936597 0.37150400
#> 27      10 7.668307 1.490157  1.5647299 0.11764625
#> 28       8 7.668307 1.490157  0.2225895 0.82385504
#> 29       8 7.668307 1.490157  0.2225895 0.82385504
#> 30      10 7.668307 1.490157  1.5647299 0.11764625
#> 31       9 7.668307 1.490157  0.8936597 0.37150400
#> 32       8 7.668307 1.490157  0.2225895 0.82385504
#> 33       6 7.668307 1.490157 -1.1195510 0.26290515
#> 34       8 7.668307 1.490157  0.2225895 0.82385504
#> 35       8 7.668307 1.490157  0.2225895 0.82385504
#> 36       9 7.668307 1.490157  0.8936597 0.37150400
#> 37       8 7.668307 1.490157  0.2225895 0.82385504
#> 38       7 7.668307 1.490157 -0.4484808 0.65380626
#> 39       8 7.668307 1.490157  0.2225895 0.82385504
#> 40       9 7.668307 1.490157  0.8936597 0.37150400
#> 41       8 7.668307 1.490157  0.2225895 0.82385504
#> 42       9 7.668307 1.490157  0.8936597 0.37150400
#> 43       7 7.668307 1.490157 -0.4484808 0.65380626
#> 44       8 7.668307 1.490157  0.2225895 0.82385504
#> 45       8 7.668307 1.490157  0.2225895 0.82385504
#> 46       8 7.668307 1.490157  0.2225895 0.82385504
#> 47       7 7.668307 1.490157 -0.4484808 0.65380626
#> 48       6 7.668307 1.490157 -1.1195510 0.26290515
#> 49       6 7.668307 1.490157 -1.1195510 0.26290515
#> 50       8 7.668307 1.490157  0.2225895 0.82385504
#> 51       6 7.668307 1.490157 -1.1195510 0.26290515
#> 52       7 7.668307 1.490157 -0.4484808 0.65380626
#> 53       4 7.668307 1.490157 -2.4616914 0.01382836
#> 54       7 7.668307 1.490157 -0.4484808 0.65380626
#> 55       8 7.668307 1.490157  0.2225895 0.82385504
#> 56       8 7.668307 1.490157  0.2225895 0.82385504
#> 57       4 7.668307 1.490157 -2.4616914 0.01382836
#> 58       5 7.668307 1.490157 -1.7906212 0.07335410
#> 59       9 7.668307 1.490157  0.8936597 0.37150400
#> 60      11 7.668307 1.490157  2.2358001 0.02536487
#> 61       4 7.668307 1.490157 -2.4616914 0.01382836
#> 62       7 7.668307 1.490157 -0.4484808 0.65380626
#> 63       6 7.668307 1.490157 -1.1195510 0.26290515
#> 64      10 7.668307 1.490157  1.5647299 0.11764625
#> 65       9 7.668307 1.490157  0.8936597 0.37150400
#> 66       7 7.668307 1.490157 -0.4484808 0.65380626
#> 67       7 7.668307 1.490157 -0.4484808 0.65380626
#> 68       6 7.668307 1.490157 -1.1195510 0.26290515
#> 69       8 7.668307 1.490157  0.2225895 0.82385504
#> 70      10 7.668307 1.490157  1.5647299 0.11764625
#> 71       8 7.668307 1.490157  0.2225895 0.82385504
#> 72       8 7.668307 1.490157  0.2225895 0.82385504
#> 73       6 7.668307 1.490157 -1.1195510 0.26290515
#> 74       8 7.668307 1.490157  0.2225895 0.82385504
#> 75       8 7.668307 1.490157  0.2225895 0.82385504
#> 76       8 7.668307 1.490157  0.2225895 0.82385504
#> 77      10 7.668307 1.490157  1.5647299 0.11764625
#> 78       8 7.668307 1.490157  0.2225895 0.82385504
#> 79       9 7.668307 1.490157  0.8936597 0.37150400
#> 80       8 7.668307 1.490157  0.2225895 0.82385504
#> 81       8 7.668307 1.490157  0.2225895 0.82385504
#> 82       8 7.668307 1.490157  0.2225895 0.82385504
#> 83       9 7.668307 1.490157  0.8936597 0.37150400
#> 84       8 7.668307 1.490157  0.2225895 0.82385504
#> 85       9 7.668307 1.490157  0.8936597 0.37150400
#> 86      10 7.668307 1.490157  1.5647299 0.11764625
#> 87       7 7.668307 1.490157 -0.4484808 0.65380626
#> 88       9 7.668307 1.490157  0.8936597 0.37150400
#> 89       7 7.668307 1.490157 -0.4484808 0.65380626
#> 90       7 7.668307 1.490157 -0.4484808 0.65380626
#> 91       8 7.668307 1.490157  0.2225895 0.82385504
#> 92      11 7.668307 1.490157  2.2358001 0.02536487
#> 93       7 7.668307 1.490157 -0.4484808 0.65380626
#> 94       6 7.668307 1.490157 -1.1195510 0.26290515
#> 95       9 7.668307 1.490157  0.8936597 0.37150400
#> 96       8 7.668307 1.490157  0.2225895 0.82385504
#> 97       8 7.668307 1.490157  0.2225895 0.82385504
#> 98       9 7.668307 1.490157  0.8936597 0.37150400
#> 99      10 7.668307 1.490157  1.5647299 0.11764625
#> 100     10 7.668307 1.490157  1.5647299 0.11764625
#> 101      9 7.668307 1.490157  0.8936597 0.37150400
#> 102      7 7.668307 1.490157 -0.4484808 0.65380626
#> 103     10 7.668307 1.490157  1.5647299 0.11764625
#> 104     10 7.668307 1.490157  1.5647299 0.11764625
#> 105      9 7.668307 1.490157  0.8936597 0.37150400
#> 106     10 7.668307 1.490157  1.5647299 0.11764625
#> 107      7 7.668307 1.490157 -0.4484808 0.65380626
#> 108      8 7.668307 1.490157  0.2225895 0.82385504
#> 109     10 7.668307 1.490157  1.5647299 0.11764625
#> 110      7 7.668307 1.490157 -0.4484808 0.65380626
#> 111     11 7.668307 1.490157  2.2358001 0.02536487
#> 112      7 7.668307 1.490157 -0.4484808 0.65380626
#> 113      9 7.668307 1.490157  0.8936597 0.37150400
#> 114     10 7.668307 1.490157  1.5647299 0.11764625
#> 115      5 7.668307 1.490157 -1.7906212 0.07335410
#> 116      7 7.668307 1.490157 -0.4484808 0.65380626
#> 117      8 7.668307 1.490157  0.2225895 0.82385504
#> 118      9 7.668307 1.490157  0.8936597 0.37150400
#> 119      7 7.668307 1.490157 -0.4484808 0.65380626
#> 120      9 7.668307 1.490157  0.8936597 0.37150400
#> 121      9 7.668307 1.490157  0.8936597 0.37150400
#> 122      3 7.668307 1.490157 -3.1327617 0.00173170
#> 123      7 7.668307 1.490157 -0.4484808 0.65380626
#> 124      9 7.668307 1.490157  0.8936597 0.37150400
#> 125      9 7.668307 1.490157  0.8936597 0.37150400
#> 126      7 7.668307 1.490157 -0.4484808 0.65380626
#> 127      7 7.668307 1.490157 -0.4484808 0.65380626
#> 128     10 7.668307 1.490157  1.5647299 0.11764625
#> 129      9 7.668307 1.490157  0.8936597 0.37150400
#> 130      8 7.668307 1.490157  0.2225895 0.82385504
#> 131      6 7.668307 1.490157 -1.1195510 0.26290515
#> 132      9 7.668307 1.490157  0.8936597 0.37150400
#> 133      8 7.668307 1.490157  0.2225895 0.82385504
#> 134      9 7.668307 1.490157  0.8936597 0.37150400
#> 135      8 7.668307 1.490157  0.2225895 0.82385504
#> 136      7 7.668307 1.490157 -0.4484808 0.65380626
#> 137      5 7.668307 1.490157 -1.7906212 0.07335410
#> 138      9 7.668307 1.490157  0.8936597 0.37150400
#> 139      8 7.668307 1.490157  0.2225895 0.82385504
#> 140      8 7.668307 1.490157  0.2225895 0.82385504
#> 141      7 7.668307 1.490157 -0.4484808 0.65380626
#> 142      7 7.668307 1.490157 -0.4484808 0.65380626
#> 143     10 7.668307 1.490157  1.5647299 0.11764625
#> 144      8 7.668307 1.490157  0.2225895 0.82385504
#> 145      9 7.668307 1.490157  0.8936597 0.37150400
#> 146      7 7.668307 1.490157 -0.4484808 0.65380626
#> 147      9 7.668307 1.490157  0.8936597 0.37150400
#> 148      9 7.668307 1.490157  0.8936597 0.37150400
#> 149      9 7.668307 1.490157  0.8936597 0.37150400
#> 150      8 7.668307 1.490157  0.2225895 0.82385504
#> 151      9 7.668307 1.490157  0.8936597 0.37150400
#> 152      7 7.668307 1.490157 -0.4484808 0.65380626
#> 153      7 7.668307 1.490157 -0.4484808 0.65380626
#> 154      9 7.668307 1.490157  0.8936597 0.37150400
#> 155      9 7.668307 1.490157  0.8936597 0.37150400
#> 156      9 7.668307 1.490157  0.8936597 0.37150400
#> 157     10 7.668307 1.490157  1.5647299 0.11764625
#> 158      8 7.668307 1.490157  0.2225895 0.82385504
#> 159      8 7.668307 1.490157  0.2225895 0.82385504
#> 160      8 7.668307 1.490157  0.2225895 0.82385504
#> 161      8 7.668307 1.490157  0.2225895 0.82385504
#> 162      9 7.668307 1.490157  0.8936597 0.37150400
#> 163      8 7.668307 1.490157  0.2225895 0.82385504
#> 164     10 7.668307 1.490157  1.5647299 0.11764625
#> 165      8 7.668307 1.490157  0.2225895 0.82385504
#> 166      8 7.668307 1.490157  0.2225895 0.82385504
#> 167     10 7.668307 1.490157  1.5647299 0.11764625
#> 168      8 7.668307 1.490157  0.2225895 0.82385504
#> 169      6 7.668307 1.490157 -1.1195510 0.26290515
#> 170      9 7.668307 1.490157  0.8936597 0.37150400
#> 171      9 7.668307 1.490157  0.8936597 0.37150400
#> 172      9 7.668307 1.490157  0.8936597 0.37150400
#> 173      7 7.668307 1.490157 -0.4484808 0.65380626
#> 174      9 7.668307 1.490157  0.8936597 0.37150400
#> 175      7 7.668307 1.490157 -0.4484808 0.65380626
#> 176     10 7.668307 1.490157  1.5647299 0.11764625
#> 177      9 7.668307 1.490157  0.8936597 0.37150400
#> 178      7 7.668307 1.490157 -0.4484808 0.65380626
#> 179      7 7.668307 1.490157 -0.4484808 0.65380626
#> 180     10 7.668307 1.490157  1.5647299 0.11764625
#> 181      8 7.668307 1.490157  0.2225895 0.82385504
#> 182     11 7.668307 1.490157  2.2358001 0.02536487
#> 183      8 7.668307 1.490157  0.2225895 0.82385504
#> 184      8 7.668307 1.490157  0.2225895 0.82385504
#> 185      9 7.668307 1.490157  0.8936597 0.37150400
#> 186      4 7.668307 1.490157 -2.4616914 0.01382836
#> 187      8 7.668307 1.490157  0.2225895 0.82385504
#> 188      7 7.668307 1.490157 -0.4484808 0.65380626
#> 189      9 7.668307 1.490157  0.8936597 0.37150400
#> 190      8 7.668307 1.490157  0.2225895 0.82385504
#> 191      9 7.668307 1.490157  0.8936597 0.37150400
#> 192      8 7.668307 1.490157  0.2225895 0.82385504
#> 193      7 7.668307 1.490157 -0.4484808 0.65380626
#> 194      9 7.668307 1.490157  0.8936597 0.37150400
#> 195     10 7.668307 1.490157  1.5647299 0.11764625
#> 196      8 7.668307 1.490157  0.2225895 0.82385504
#> 197      8 7.668307 1.490157  0.2225895 0.82385504
#> 198     10 7.668307 1.490157  1.5647299 0.11764625
#> 199      7 7.668307 1.490157 -0.4484808 0.65380626
#> 200     10 7.668307 1.490157  1.5647299 0.11764625
#> 201      7 7.668307 1.490157 -0.4484808 0.65380626
#> 202      8 7.668307 1.490157  0.2225895 0.82385504
#> 203      7 7.668307 1.490157 -0.4484808 0.65380626
#> 204      9 7.668307 1.490157  0.8936597 0.37150400
#> 205      7 7.668307 1.490157 -0.4484808 0.65380626
#> 206      8 7.668307 1.490157  0.2225895 0.82385504
#> 207      7 7.668307 1.490157 -0.4484808 0.65380626
#> 208      8 7.668307 1.490157  0.2225895 0.82385504
#> 209      6 7.668307 1.490157 -1.1195510 0.26290515
#> 210      8 7.668307 1.490157  0.2225895 0.82385504
#> 211      9 7.668307 1.490157  0.8936597 0.37150400
#> 212      8 7.668307 1.490157  0.2225895 0.82385504
#> 213     10 7.668307 1.490157  1.5647299 0.11764625
#> 214      7 7.668307 1.490157 -0.4484808 0.65380626
#> 215      8 7.668307 1.490157  0.2225895 0.82385504
#> 216      7 7.668307 1.490157 -0.4484808 0.65380626
#> 217      8 7.668307 1.490157  0.2225895 0.82385504
#> 218      9 7.668307 1.490157  0.8936597 0.37150400
#> 219      7 7.668307 1.490157 -0.4484808 0.65380626
#> 220      8 7.668307 1.490157  0.2225895 0.82385504
#> 221      6 7.668307 1.490157 -1.1195510 0.26290515
#> 222      9 7.668307 1.490157  0.8936597 0.37150400
#> 223      7 7.668307 1.490157 -0.4484808 0.65380626
#> 224      4 7.668307 1.490157 -2.4616914 0.01382836
#> 225     11 7.668307 1.490157  2.2358001 0.02536487
#> 226      6 7.668307 1.490157 -1.1195510 0.26290515
#> 227      9 7.668307 1.490157  0.8936597 0.37150400
#> 228      6 7.668307 1.490157 -1.1195510 0.26290515
#> 229      6 7.668307 1.490157 -1.1195510 0.26290515
#> 230      7 7.668307 1.490157 -0.4484808 0.65380626
#> 231      7 7.668307 1.490157 -0.4484808 0.65380626
#> 232      7 7.668307 1.490157 -0.4484808 0.65380626
#> 233      6 7.668307 1.490157 -1.1195510 0.26290515
#> 234      7 7.668307 1.490157 -0.4484808 0.65380626
#> 235      8 7.668307 1.490157  0.2225895 0.82385504
#> 236      9 7.668307 1.490157  0.8936597 0.37150400
#> 237      6 7.668307 1.490157 -1.1195510 0.26290515
#> 238     10 7.668307 1.490157  1.5647299 0.11764625
#> 239     10 7.668307 1.490157  1.5647299 0.11764625
#> 240     10 7.668307 1.490157  1.5647299 0.11764625
#> 241     11 7.668307 1.490157  2.2358001 0.02536487
#> 242     11 7.668307 1.490157  2.2358001 0.02536487
#> 243      6 7.668307 1.490157 -1.1195510 0.26290515
#> 244      8 7.668307 1.490157  0.2225895 0.82385504
#> 245      7 7.668307 1.490157 -0.4484808 0.65380626
#> 246      7 7.668307 1.490157 -0.4484808 0.65380626
#> 247      9 7.668307 1.490157  0.8936597 0.37150400
#> 248      9 7.668307 1.490157  0.8936597 0.37150400
#> 249      7 7.668307 1.490157 -0.4484808 0.65380626
#> 250      9 7.668307 1.490157  0.8936597 0.37150400
#> 251      9 7.668307 1.490157  0.8936597 0.37150400
#> 252      6 7.668307 1.490157 -1.1195510 0.26290515
#> 253      7 7.668307 1.490157 -0.4484808 0.65380626
#> 254     10 7.668307 1.490157  1.5647299 0.11764625
#> 255      5 7.668307 1.490157 -1.7906212 0.07335410
#> 256      5 7.668307 1.490157 -1.7906212 0.07335410
#> 257     10 7.668307 1.490157  1.5647299 0.11764625
#> 258      8 7.668307 1.490157  0.2225895 0.82385504
#> 259      9 7.668307 1.490157  0.8936597 0.37150400
#> 260      7 7.668307 1.490157 -0.4484808 0.65380626
#> 261     10 7.668307 1.490157  1.5647299 0.11764625
#> 262      6 7.668307 1.490157 -1.1195510 0.26290515
#> 263      8 7.668307 1.490157  0.2225895 0.82385504
#> 264      6 7.668307 1.490157 -1.1195510 0.26290515
#> 265      7 7.668307 1.490157 -0.4484808 0.65380626
#> 266      7 7.668307 1.490157 -0.4484808 0.65380626
#> 267      7 7.668307 1.490157 -0.4484808 0.65380626
#> 268      9 7.668307 1.490157  0.8936597 0.37150400
#> 269      6 7.668307 1.490157 -1.1195510 0.26290515
#> 270      7 7.668307 1.490157 -0.4484808 0.65380626
#> 271      7 7.668307 1.490157 -0.4484808 0.65380626
#> 272      8 7.668307 1.490157  0.2225895 0.82385504
#> 273      8 7.668307 1.490157  0.2225895 0.82385504
#> 274     10 7.668307 1.490157  1.5647299 0.11764625
#> 275      5 7.668307 1.490157 -1.7906212 0.07335410
#> 276      7 7.668307 1.490157 -0.4484808 0.65380626
#> 277     10 7.668307 1.490157  1.5647299 0.11764625
#> 278      7 7.668307 1.490157 -0.4484808 0.65380626
#> 279      8 7.668307 1.490157  0.2225895 0.82385504
#> 280      7 7.668307 1.490157 -0.4484808 0.65380626
#> 281      7 7.668307 1.490157 -0.4484808 0.65380626
#> 282      8 7.668307 1.490157  0.2225895 0.82385504
#> 283      8 7.668307 1.490157  0.2225895 0.82385504
#> 284      9 7.668307 1.490157  0.8936597 0.37150400
#> 285     10 7.668307 1.490157  1.5647299 0.11764625
#> 286      8 7.668307 1.490157  0.2225895 0.82385504
#> 287      8 7.668307 1.490157  0.2225895 0.82385504
#> 288      9 7.668307 1.490157  0.8936597 0.37150400
#> 289      9 7.668307 1.490157  0.8936597 0.37150400
#> 290     10 7.668307 1.490157  1.5647299 0.11764625
#> 291      9 7.668307 1.490157  0.8936597 0.37150400
#> 292      9 7.668307 1.490157  0.8936597 0.37150400
#> 293     10 7.668307 1.490157  1.5647299 0.11764625
#> 294      8 7.668307 1.490157  0.2225895 0.82385504
#> 295     10 7.668307 1.490157  1.5647299 0.11764625
#> 296      8 7.668307 1.490157  0.2225895 0.82385504
#> 297     10 7.668307 1.490157  1.5647299 0.11764625
#> 298      8 7.668307 1.490157  0.2225895 0.82385504
#> 299      9 7.668307 1.490157  0.8936597 0.37150400
#> 300      9 7.668307 1.490157  0.8936597 0.37150400
#> 301      9 7.668307 1.490157  0.8936597 0.37150400
#> 302      7 7.668307 1.490157 -0.4484808 0.65380626
#> 303      7 7.668307 1.490157 -0.4484808 0.65380626
#> 304      9 7.668307 1.490157  0.8936597 0.37150400
#> 305      8 7.668307 1.490157  0.2225895 0.82385504
#> 306     10 7.668307 1.490157  1.5647299 0.11764625
#> 307      9 7.668307 1.490157  0.8936597 0.37150400
#> 308      6 7.668307 1.490157 -1.1195510 0.26290515
#> 309      8 7.668307 1.490157  0.2225895 0.82385504
#> 310      7 7.668307 1.490157 -0.4484808 0.65380626
#> 311      8 7.668307 1.490157  0.2225895 0.82385504
#> 312      8 7.668307 1.490157  0.2225895 0.82385504
#> 313      9 7.668307 1.490157  0.8936597 0.37150400
#> 314      4 7.668307 1.490157 -2.4616914 0.01382836
#> 315      6 7.668307 1.490157 -1.1195510 0.26290515
#> 316      7 7.668307 1.490157 -0.4484808 0.65380626
#> 317      8 7.668307 1.490157  0.2225895 0.82385504
#> 318      9 7.668307 1.490157  0.8936597 0.37150400
#> 319      8 7.668307 1.490157  0.2225895 0.82385504
#> 320      9 7.668307 1.490157  0.8936597 0.37150400
#> 321      7 7.668307 1.490157 -0.4484808 0.65380626
#> 322      9 7.668307 1.490157  0.8936597 0.37150400
#> 323      9 7.668307 1.490157  0.8936597 0.37150400
#> 324      9 7.668307 1.490157  0.8936597 0.37150400
#> 325      9 7.668307 1.490157  0.8936597 0.37150400
#> 326      5 7.668307 1.490157 -1.7906212 0.07335410
#> 327      6 7.668307 1.490157 -1.1195510 0.26290515
#> 328      8 7.668307 1.490157  0.2225895 0.82385504
#> 329      9 7.668307 1.490157  0.8936597 0.37150400
#> 330     10 7.668307 1.490157  1.5647299 0.11764625
#> 331      8 7.668307 1.490157  0.2225895 0.82385504
#> 332      8 7.668307 1.490157  0.2225895 0.82385504
#> 333      9 7.668307 1.490157  0.8936597 0.37150400
#> 334      8 7.668307 1.490157  0.2225895 0.82385504
#> 335      7 7.668307 1.490157 -0.4484808 0.65380626
#> 336      5 7.668307 1.490157 -1.7906212 0.07335410
#> 337      6 7.668307 1.490157 -1.1195510 0.26290515
#> 338      9 7.668307 1.490157  0.8936597 0.37150400
#> 339      8 7.668307 1.490157  0.2225895 0.82385504
#> 340      6 7.668307 1.490157 -1.1195510 0.26290515
#> 341      6 7.668307 1.490157 -1.1195510 0.26290515
#> 342     11 7.668307 1.490157  2.2358001 0.02536487
#> 343      9 7.668307 1.490157  0.8936597 0.37150400
#> 344     11 7.668307 1.490157  2.2358001 0.02536487
#> 345      9 7.668307 1.490157  0.8936597 0.37150400
#> 346      8 7.668307 1.490157  0.2225895 0.82385504
#> 347      9 7.668307 1.490157  0.8936597 0.37150400
#> 348      8 7.668307 1.490157  0.2225895 0.82385504
#> 349     11 7.668307 1.490157  2.2358001 0.02536487
#> 350      9 7.668307 1.490157  0.8936597 0.37150400
#> 351      9 7.668307 1.490157  0.8936597 0.37150400
#> 352      9 7.668307 1.490157  0.8936597 0.37150400
#> 353      7 7.668307 1.490157 -0.4484808 0.65380626
#> 354      9 7.668307 1.490157  0.8936597 0.37150400
#> 355      8 7.668307 1.490157  0.2225895 0.82385504
#> 356     11 7.668307 1.490157  2.2358001 0.02536487
#> 357      8 7.668307 1.490157  0.2225895 0.82385504
#> 358      9 7.668307 1.490157  0.8936597 0.37150400
#> 359      9 7.668307 1.490157  0.8936597 0.37150400
#> 360      9 7.668307 1.490157  0.8936597 0.37150400
#> 361      9 7.668307 1.490157  0.8936597 0.37150400
#> 362      8 7.668307 1.490157  0.2225895 0.82385504
#> 363      9 7.668307 1.490157  0.8936597 0.37150400
#> 364      6 7.668307 1.490157 -1.1195510 0.26290515
#> 365     10 7.668307 1.490157  1.5647299 0.11764625
#> 366      8 7.668307 1.490157  0.2225895 0.82385504
#> 367     10 7.668307 1.490157  1.5647299 0.11764625
#> 368     10 7.668307 1.490157  1.5647299 0.11764625
#> 369      7 7.668307 1.490157 -0.4484808 0.65380626
#> 370      8 7.668307 1.490157  0.2225895 0.82385504
#> 371      8 7.668307 1.490157  0.2225895 0.82385504
#> 372      9 7.668307 1.490157  0.8936597 0.37150400
#> 373      9 7.668307 1.490157  0.8936597 0.37150400
#> 374     10 7.668307 1.490157  1.5647299 0.11764625
#> 375      9 7.668307 1.490157  0.8936597 0.37150400
#> 376      8 7.668307 1.490157  0.2225895 0.82385504
#> 377     10 7.668307 1.490157  1.5647299 0.11764625
#> 378      8 7.668307 1.490157  0.2225895 0.82385504
#> 379      8 7.668307 1.490157  0.2225895 0.82385504
#> 380      8 7.668307 1.490157  0.2225895 0.82385504
#> 381      7 7.668307 1.490157 -0.4484808 0.65380626
#> 382      6 7.668307 1.490157 -1.1195510 0.26290515
#> 383      8 7.668307 1.490157  0.2225895 0.82385504
#> 384     10 7.668307 1.490157  1.5647299 0.11764625
#> 385      7 7.668307 1.490157 -0.4484808 0.65380626
#> 386      9 7.668307 1.490157  0.8936597 0.37150400
#> 387      8 7.668307 1.490157  0.2225895 0.82385504
#> 388      9 7.668307 1.490157  0.8936597 0.37150400
#> 389      8 7.668307 1.490157  0.2225895 0.82385504
#> 390      7 7.668307 1.490157 -0.4484808 0.65380626
#> 391      4 7.668307 1.490157 -2.4616914 0.01382836
#> 392     10 7.668307 1.490157  1.5647299 0.11764625
#> 393      6 7.668307 1.490157 -1.1195510 0.26290515
#> 394      8 7.668307 1.490157  0.2225895 0.82385504
#> 395      8 7.668307 1.490157  0.2225895 0.82385504
#> 396      7 7.668307 1.490157 -0.4484808 0.65380626
#> 397      8 7.668307 1.490157  0.2225895 0.82385504
#> 398      8 7.668307 1.490157  0.2225895 0.82385504
#> 399      9 7.668307 1.490157  0.8936597 0.37150400
#> 400      9 7.668307 1.490157  0.8936597 0.37150400
#> 401      9 7.668307 1.490157  0.8936597 0.37150400
#> 402      9 7.668307 1.490157  0.8936597 0.37150400
#> 403      9 7.668307 1.490157  0.8936597 0.37150400
#> 404      8 7.668307 1.490157  0.2225895 0.82385504
#> 405      5 7.668307 1.490157 -1.7906212 0.07335410
#> 406      7 7.668307 1.490157 -0.4484808 0.65380626
#> 407      8 7.668307 1.490157  0.2225895 0.82385504
#> 408      8 7.668307 1.490157  0.2225895 0.82385504
#> 409      8 7.668307 1.490157  0.2225895 0.82385504
#> 410      8 7.668307 1.490157  0.2225895 0.82385504
#> 411      8 7.668307 1.490157  0.2225895 0.82385504
#> 412      7 7.668307 1.490157 -0.4484808 0.65380626
#> 413      8 7.668307 1.490157  0.2225895 0.82385504
#> 414     10 7.668307 1.490157  1.5647299 0.11764625
#> 415      8 7.668307 1.490157  0.2225895 0.82385504
#> 416      9 7.668307 1.490157  0.8936597 0.37150400
#> 417      9 7.668307 1.490157  0.8936597 0.37150400
#> 418      8 7.668307 1.490157  0.2225895 0.82385504
#> 419      9 7.668307 1.490157  0.8936597 0.37150400
#> 420      8 7.668307 1.490157  0.2225895 0.82385504
#> 421     11 7.668307 1.490157  2.2358001 0.02536487
#> 422      7 7.668307 1.490157 -0.4484808 0.65380626
#> 423      6 7.668307 1.490157 -1.1195510 0.26290515
#> 424      8 7.668307 1.490157  0.2225895 0.82385504
#> 425      9 7.668307 1.490157  0.8936597 0.37150400
#> 426      5 7.668307 1.490157 -1.7906212 0.07335410
#> 427      9 7.668307 1.490157  0.8936597 0.37150400
#> 428      9 7.668307 1.490157  0.8936597 0.37150400
#> 429     11 7.668307 1.490157  2.2358001 0.02536487
#> 430      8 7.668307 1.490157  0.2225895 0.82385504
#> 431      7 7.668307 1.490157 -0.4484808 0.65380626
#> 432      7 7.668307 1.490157 -0.4484808 0.65380626
#> 433      7 7.668307 1.490157 -0.4484808 0.65380626
#> 434      9 7.668307 1.490157  0.8936597 0.37150400
#> 435      9 7.668307 1.490157  0.8936597 0.37150400
#> 436      8 7.668307 1.490157  0.2225895 0.82385504
#> 437     10 7.668307 1.490157  1.5647299 0.11764625
#> 438      9 7.668307 1.490157  0.8936597 0.37150400
#> 439     10 7.668307 1.490157  1.5647299 0.11764625
#> 440      8 7.668307 1.490157  0.2225895 0.82385504
#> 441     10 7.668307 1.490157  1.5647299 0.11764625
#> 442      9 7.668307 1.490157  0.8936597 0.37150400
#> 443      7 7.668307 1.490157 -0.4484808 0.65380626
#> 444      8 7.668307 1.490157  0.2225895 0.82385504
#> 445     10 7.668307 1.490157  1.5647299 0.11764625
#> 446      8 7.668307 1.490157  0.2225895 0.82385504
#> 447      5 7.668307 1.490157 -1.7906212 0.07335410
#> 448      6 7.668307 1.490157 -1.1195510 0.26290515
#> 449      8 7.668307 1.490157  0.2225895 0.82385504
#> 450      8 7.668307 1.490157  0.2225895 0.82385504
#> 451      8 7.668307 1.490157  0.2225895 0.82385504
#> 452      8 7.668307 1.490157  0.2225895 0.82385504
#> 453      9 7.668307 1.490157  0.8936597 0.37150400
#> 454     10 7.668307 1.490157  1.5647299 0.11764625
#> 455     10 7.668307 1.490157  1.5647299 0.11764625
#> 456      8 7.668307 1.490157  0.2225895 0.82385504
#> 457      7 7.668307 1.490157 -0.4484808 0.65380626
#> 458      7 7.668307 1.490157 -0.4484808 0.65380626
#> 459      9 7.668307 1.490157  0.8936597 0.37150400
#> 460      9 7.668307 1.490157  0.8936597 0.37150400
#> 461      6 7.668307 1.490157 -1.1195510 0.26290515
#> 462      5 7.668307 1.490157 -1.7906212 0.07335410
#> 463     10 7.668307 1.490157  1.5647299 0.11764625
#> 464      8 7.668307 1.490157  0.2225895 0.82385504
#> 465      8 7.668307 1.490157  0.2225895 0.82385504
#> 466      7 7.668307 1.490157 -0.4484808 0.65380626
#> 467      6 7.668307 1.490157 -1.1195510 0.26290515
#> 468      9 7.668307 1.490157  0.8936597 0.37150400
#> 469      8 7.668307 1.490157  0.2225895 0.82385504
#> 470      8 7.668307 1.490157  0.2225895 0.82385504
#> 471      8 7.668307 1.490157  0.2225895 0.82385504
#> 472      7 7.668307 1.490157 -0.4484808 0.65380626
#> 473     10 7.668307 1.490157  1.5647299 0.11764625
#> 474      8 7.668307 1.490157  0.2225895 0.82385504
#> 475      9 7.668307 1.490157  0.8936597 0.37150400
#> 476     10 7.668307 1.490157  1.5647299 0.11764625
#> 477      7 7.668307 1.490157 -0.4484808 0.65380626
#> 478      4 7.668307 1.490157 -2.4616914 0.01382836
#> 479      6 7.668307 1.490157 -1.1195510 0.26290515
#> 480      8 7.668307 1.490157  0.2225895 0.82385504
#> 481      8 7.668307 1.490157  0.2225895 0.82385504
#> 482      8 7.668307 1.490157  0.2225895 0.82385504
#> 483      7 7.668307 1.490157 -0.4484808 0.65380626
#> 484      7 7.668307 1.490157 -0.4484808 0.65380626
#> 485      6 7.668307 1.490157 -1.1195510 0.26290515
#> 486      8 7.668307 1.490157  0.2225895 0.82385504
#> 487      9 7.668307 1.490157  0.8936597 0.37150400
#> 488      8 7.668307 1.490157  0.2225895 0.82385504
#> 489     10 7.668307 1.490157  1.5647299 0.11764625
#> 490     10 7.668307 1.490157  1.5647299 0.11764625
#> 491      8 7.668307 1.490157  0.2225895 0.82385504
#> 492      6 7.668307 1.490157 -1.1195510 0.26290515
#> 493      9 7.668307 1.490157  0.8936597 0.37150400
#> 494      6 7.668307 1.490157 -1.1195510 0.26290515
#> 495      7 7.668307 1.490157 -0.4484808 0.65380626
#> 496      9 7.668307 1.490157  0.8936597 0.37150400
#> 497      8 7.668307 1.490157  0.2225895 0.82385504
#> 498      6 7.668307 1.490157 -1.1195510 0.26290515
#> 499      7 7.668307 1.490157 -0.4484808 0.65380626
#> 500      8 7.668307 1.490157  0.2225895 0.82385504
#> 501      9 7.668307 1.490157  0.8936597 0.37150400
#> 502     10 7.668307 1.490157  1.5647299 0.11764625
#> 503      7 7.668307 1.490157 -0.4484808 0.65380626
#> 504      5 7.668307 1.490157 -1.7906212 0.07335410
#> 505      9 7.668307 1.490157  0.8936597 0.37150400
#> 506      7 7.668307 1.490157 -0.4484808 0.65380626
#> 507      6 7.668307 1.490157 -1.1195510 0.26290515
#> 508     10 7.668307 1.490157  1.5647299 0.11764625
#> 509      8 7.668307 1.490157  0.2225895 0.82385504
#> 510      7 7.668307 1.490157 -0.4484808 0.65380626
#> 511      8 7.668307 1.490157  0.2225895 0.82385504
#> 512     10 7.668307 1.490157  1.5647299 0.11764625
#> 513      9 7.668307 1.490157  0.8936597 0.37150400
#> 514      9 7.668307 1.490157  0.8936597 0.37150400
#> 515     10 7.668307 1.490157  1.5647299 0.11764625
#> 516     11 7.668307 1.490157  2.2358001 0.02536487
#> 517      7 7.668307 1.490157 -0.4484808 0.65380626
#> 518      7 7.668307 1.490157 -0.4484808 0.65380626
#> 519      9 7.668307 1.490157  0.8936597 0.37150400
#> 520      9 7.668307 1.490157  0.8936597 0.37150400
#> 521      7 7.668307 1.490157 -0.4484808 0.65380626
#> 522      6 7.668307 1.490157 -1.1195510 0.26290515
#> 523     10 7.668307 1.490157  1.5647299 0.11764625
#> 524      8 7.668307 1.490157  0.2225895 0.82385504
#> 525     10 7.668307 1.490157  1.5647299 0.11764625
#> 526      7 7.668307 1.490157 -0.4484808 0.65380626
#> 527      6 7.668307 1.490157 -1.1195510 0.26290515
#> 528      7 7.668307 1.490157 -0.4484808 0.65380626
#> 529      9 7.668307 1.490157  0.8936597 0.37150400
#> 530      6 7.668307 1.490157 -1.1195510 0.26290515
#> 531      9 7.668307 1.490157  0.8936597 0.37150400
#> 532     10 7.668307 1.490157  1.5647299 0.11764625
#> 533     10 7.668307 1.490157  1.5647299 0.11764625
#> 534      8 7.668307 1.490157  0.2225895 0.82385504
#> 535     10 7.668307 1.490157  1.5647299 0.11764625
#> 536      8 7.668307 1.490157  0.2225895 0.82385504
#> 537      9 7.668307 1.490157  0.8936597 0.37150400
#> 538      8 7.668307 1.490157  0.2225895 0.82385504
#> 539      8 7.668307 1.490157  0.2225895 0.82385504
#> 540      8 7.668307 1.490157  0.2225895 0.82385504
#> 541      9 7.668307 1.490157  0.8936597 0.37150400
#> 542      9 7.668307 1.490157  0.8936597 0.37150400
#> 543      8 7.668307 1.490157  0.2225895 0.82385504
#> 544      8 7.668307 1.490157  0.2225895 0.82385504
#> 545      8 7.668307 1.490157  0.2225895 0.82385504
#> 546      9 7.668307 1.490157  0.8936597 0.37150400
#> 547      9 7.668307 1.490157  0.8936597 0.37150400
#> 548      8 7.668307 1.490157  0.2225895 0.82385504
#> 549      7 7.668307 1.490157 -0.4484808 0.65380626
#> 550     10 7.668307 1.490157  1.5647299 0.11764625
#> 551     10 7.668307 1.490157  1.5647299 0.11764625
#> 552      9 7.668307 1.490157  0.8936597 0.37150400
#> 553     10 7.668307 1.490157  1.5647299 0.11764625
#> 554      9 7.668307 1.490157  0.8936597 0.37150400
#> 555      8 7.668307 1.490157  0.2225895 0.82385504
#> 556      8 7.668307 1.490157  0.2225895 0.82385504
#> 557     10 7.668307 1.490157  1.5647299 0.11764625
#> 558      7 7.668307 1.490157 -0.4484808 0.65380626
#> 559      9 7.668307 1.490157  0.8936597 0.37150400
#> 560      8 7.668307 1.490157  0.2225895 0.82385504
#> 561      9 7.668307 1.490157  0.8936597 0.37150400
#> 562      9 7.668307 1.490157  0.8936597 0.37150400
#> 563      8 7.668307 1.490157  0.2225895 0.82385504
#> 564      9 7.668307 1.490157  0.8936597 0.37150400
#> 565      6 7.668307 1.490157 -1.1195510 0.26290515
#> 566     10 7.668307 1.490157  1.5647299 0.11764625
#> 567     10 7.668307 1.490157  1.5647299 0.11764625
#> 568     10 7.668307 1.490157  1.5647299 0.11764625
#> 569     10 7.668307 1.490157  1.5647299 0.11764625
#> 570      8 7.668307 1.490157  0.2225895 0.82385504
#> 571      9 7.668307 1.490157  0.8936597 0.37150400
#> 572      6 7.668307 1.490157 -1.1195510 0.26290515
#> 573      9 7.668307 1.490157  0.8936597 0.37150400
#> 574      9 7.668307 1.490157  0.8936597 0.37150400
#> 575      9 7.668307 1.490157  0.8936597 0.37150400
#> 576      8 7.668307 1.490157  0.2225895 0.82385504
#> 577     10 7.668307 1.490157  1.5647299 0.11764625
#> 578      7 7.668307 1.490157 -0.4484808 0.65380626
#> 579      8 7.668307 1.490157  0.2225895 0.82385504
#> 580      7 7.668307 1.490157 -0.4484808 0.65380626
#> 581      8 7.668307 1.490157  0.2225895 0.82385504
#> 582     10 7.668307 1.490157  1.5647299 0.11764625
#> 583      7 7.668307 1.490157 -0.4484808 0.65380626
#> 584      9 7.668307 1.490157  0.8936597 0.37150400
#> 585      7 7.668307 1.490157 -0.4484808 0.65380626
#> 586      5 7.668307 1.490157 -1.7906212 0.07335410
#> 587      6 7.668307 1.490157 -1.1195510 0.26290515
#> 588      6 7.668307 1.490157 -1.1195510 0.26290515
#> 589      7 7.668307 1.490157 -0.4484808 0.65380626
#> 590     10 7.668307 1.490157  1.5647299 0.11764625
#> 591      7 7.668307 1.490157 -0.4484808 0.65380626
#> 592      8 7.668307 1.490157  0.2225895 0.82385504
#> 593      9 7.668307 1.490157  0.8936597 0.37150400
#> 594      9 7.668307 1.490157  0.8936597 0.37150400
#> 595     10 7.668307 1.490157  1.5647299 0.11764625
#> 596      9 7.668307 1.490157  0.8936597 0.37150400
#> 597      5 7.668307 1.490157 -1.7906212 0.07335410
#> 598      9 7.668307 1.490157  0.8936597 0.37150400
#> 599     10 7.668307 1.490157  1.5647299 0.11764625
#> 600      6 7.668307 1.490157 -1.1195510 0.26290515
#> 601      5 7.668307 1.490157 -1.7906212 0.07335410
#> 602      8 7.668307 1.490157  0.2225895 0.82385504
#> 603      9 7.668307 1.490157  0.8936597 0.37150400
#> 604     10 7.668307 1.490157  1.5647299 0.11764625
#> 605      8 7.668307 1.490157  0.2225895 0.82385504
#> 606      8 7.668307 1.490157  0.2225895 0.82385504
#> 607      4 7.668307 1.490157 -2.4616914 0.01382836
#> 608      9 7.668307 1.490157  0.8936597 0.37150400
#> 609      8 7.668307 1.490157  0.2225895 0.82385504
#> 610      9 7.668307 1.490157  0.8936597 0.37150400
#> 611     10 7.668307 1.490157  1.5647299 0.11764625
#> 612      7 7.668307 1.490157 -0.4484808 0.65380626
#> 613      8 7.668307 1.490157  0.2225895 0.82385504
#> 614      9 7.668307 1.490157  0.8936597 0.37150400
#> 615      7 7.668307 1.490157 -0.4484808 0.65380626
#> 616      6 7.668307 1.490157 -1.1195510 0.26290515
#> 617      4 7.668307 1.490157 -2.4616914 0.01382836
#> 618      6 7.668307 1.490157 -1.1195510 0.26290515
#> 619      6 7.668307 1.490157 -1.1195510 0.26290515
#> 620      8 7.668307 1.490157  0.2225895 0.82385504
#> 621      8 7.668307 1.490157  0.2225895 0.82385504
#> 622      7 7.668307 1.490157 -0.4484808 0.65380626
#> 623      5 7.668307 1.490157 -1.7906212 0.07335410
#> 624      6 7.668307 1.490157 -1.1195510 0.26290515
#> 625      9 7.668307 1.490157  0.8936597 0.37150400
#> 626      8 7.668307 1.490157  0.2225895 0.82385504
#> 627      7 7.668307 1.490157 -0.4484808 0.65380626
#> 628      9 7.668307 1.490157  0.8936597 0.37150400
#> 629      9 7.668307 1.490157  0.8936597 0.37150400
#> 630      7 7.668307 1.490157 -0.4484808 0.65380626
#> 631      8 7.668307 1.490157  0.2225895 0.82385504
#> 632      8 7.668307 1.490157  0.2225895 0.82385504
#> 633      9 7.668307 1.490157  0.8936597 0.37150400
#> 634      8 7.668307 1.490157  0.2225895 0.82385504
#> 635      8 7.668307 1.490157  0.2225895 0.82385504
#> 636      8 7.668307 1.490157  0.2225895 0.82385504
#> 637     10 7.668307 1.490157  1.5647299 0.11764625
#> 638      9 7.668307 1.490157  0.8936597 0.37150400
#> 639      7 7.668307 1.490157 -0.4484808 0.65380626
#> 640      9 7.668307 1.490157  0.8936597 0.37150400
#> 641      7 7.668307 1.490157 -0.4484808 0.65380626
#> 642     11 7.668307 1.490157  2.2358001 0.02536487
#> 643      8 7.668307 1.490157  0.2225895 0.82385504
#> 644      9 7.668307 1.490157  0.8936597 0.37150400
#> 645      7 7.668307 1.490157 -0.4484808 0.65380626
#> 646     10 7.668307 1.490157  1.5647299 0.11764625
#> 647      5 7.668307 1.490157 -1.7906212 0.07335410
#> 648      5 7.668307 1.490157 -1.7906212 0.07335410
#> 649      8 7.668307 1.490157  0.2225895 0.82385504
#> 650      9 7.668307 1.490157  0.8936597 0.37150400
#> 651      9 7.668307 1.490157  0.8936597 0.37150400
#> 652      6 7.668307 1.490157 -1.1195510 0.26290515
#> 653      7 7.668307 1.490157 -0.4484808 0.65380626
#> 654      8 7.668307 1.490157  0.2225895 0.82385504
#> 655      7 7.668307 1.490157 -0.4484808 0.65380626
#> 656      8 7.668307 1.490157  0.2225895 0.82385504
#> 657      8 7.668307 1.490157  0.2225895 0.82385504
#> 658      9 7.668307 1.490157  0.8936597 0.37150400
#> 659      7 7.668307 1.490157 -0.4484808 0.65380626
#> 660      9 7.668307 1.490157  0.8936597 0.37150400
#> 661      9 7.668307 1.490157  0.8936597 0.37150400
#> 662      7 7.668307 1.490157 -0.4484808 0.65380626
#> 663      9 7.668307 1.490157  0.8936597 0.37150400
#> 664      8 7.668307 1.490157  0.2225895 0.82385504
#> 665      8 7.668307 1.490157  0.2225895 0.82385504
#> 666     11 7.668307 1.490157  2.2358001 0.02536487
#> 667      8 7.668307 1.490157  0.2225895 0.82385504
#> 668      9 7.668307 1.490157  0.8936597 0.37150400
#> 669      9 7.668307 1.490157  0.8936597 0.37150400
#> 670      8 7.668307 1.490157  0.2225895 0.82385504
#> 671      9 7.668307 1.490157  0.8936597 0.37150400
#> 672     10 7.668307 1.490157  1.5647299 0.11764625
#> 673     10 7.668307 1.490157  1.5647299 0.11764625
#> 674      8 7.668307 1.490157  0.2225895 0.82385504
#> 675      9 7.668307 1.490157  0.8936597 0.37150400
#> 676      9 7.668307 1.490157  0.8936597 0.37150400
#> 677      9 7.668307 1.490157  0.8936597 0.37150400
#> 678      9 7.668307 1.490157  0.8936597 0.37150400
#> 679      9 7.668307 1.490157  0.8936597 0.37150400
#> 680      9 7.668307 1.490157  0.8936597 0.37150400
#> 681      6 7.668307 1.490157 -1.1195510 0.26290515
#> 682      6 7.668307 1.490157 -1.1195510 0.26290515
#> 683      7 7.668307 1.490157 -0.4484808 0.65380626
#> 684      8 7.668307 1.490157  0.2225895 0.82385504
#> 685      8 7.668307 1.490157  0.2225895 0.82385504
#> 686      7 7.668307 1.490157 -0.4484808 0.65380626
#> 687      8 7.668307 1.490157  0.2225895 0.82385504
#> 688      8 7.668307 1.490157  0.2225895 0.82385504
#> 689      8 7.668307 1.490157  0.2225895 0.82385504
#> 690      8 7.668307 1.490157  0.2225895 0.82385504
#> 691      7 7.668307 1.490157 -0.4484808 0.65380626
#> 692      6 7.668307 1.490157 -1.1195510 0.26290515
#> 693     10 7.668307 1.490157  1.5647299 0.11764625
#> 694      7 7.668307 1.490157 -0.4484808 0.65380626
#> 695      6 7.668307 1.490157 -1.1195510 0.26290515
#> 696     11 7.668307 1.490157  2.2358001 0.02536487
#> 697      8 7.668307 1.490157  0.2225895 0.82385504
#> 698      6 7.668307 1.490157 -1.1195510 0.26290515
#> 699      7 7.668307 1.490157 -0.4484808 0.65380626
#> 700      7 7.668307 1.490157 -0.4484808 0.65380626
#> 701      6 7.668307 1.490157 -1.1195510 0.26290515
#> 702      8 7.668307 1.490157  0.2225895 0.82385504
#> 703      8 7.668307 1.490157  0.2225895 0.82385504
#> 704      8 7.668307 1.490157  0.2225895 0.82385504
#> 705      8 7.668307 1.490157  0.2225895 0.82385504
#> 706     10 7.668307 1.490157  1.5647299 0.11764625
#> 707      9 7.668307 1.490157  0.8936597 0.37150400
#> 708      6 7.668307 1.490157 -1.1195510 0.26290515
#> 709      8 7.668307 1.490157  0.2225895 0.82385504
#> 710     10 7.668307 1.490157  1.5647299 0.11764625
#> 711      9 7.668307 1.490157  0.8936597 0.37150400
#> 712      9 7.668307 1.490157  0.8936597 0.37150400
#> 713      8 7.668307 1.490157  0.2225895 0.82385504
#> 714      8 7.668307 1.490157  0.2225895 0.82385504
#> 715     10 7.668307 1.490157  1.5647299 0.11764625
#> 716      7 7.668307 1.490157 -0.4484808 0.65380626
#> 717      7 7.668307 1.490157 -0.4484808 0.65380626
#> 718      9 7.668307 1.490157  0.8936597 0.37150400
#> 719      8 7.668307 1.490157  0.2225895 0.82385504
#> 720      8 7.668307 1.490157  0.2225895 0.82385504
#> 721      9 7.668307 1.490157  0.8936597 0.37150400
#> 722      9 7.668307 1.490157  0.8936597 0.37150400
#> 723      8 7.668307 1.490157  0.2225895 0.82385504
#> 724      8 7.668307 1.490157  0.2225895 0.82385504
#> 725      6 7.668307 1.490157 -1.1195510 0.26290515
#> 726     10 7.668307 1.490157  1.5647299 0.11764625
#> 727      8 7.668307 1.490157  0.2225895 0.82385504
#> 728      9 7.668307 1.490157  0.8936597 0.37150400
#> 729      7 7.668307 1.490157 -0.4484808 0.65380626
#> 730      9 7.668307 1.490157  0.8936597 0.37150400
#> 731      9 7.668307 1.490157  0.8936597 0.37150400
#> 732      7 7.668307 1.490157 -0.4484808 0.65380626
#> 733     10 7.668307 1.490157  1.5647299 0.11764625
#> 734      6 7.668307 1.490157 -1.1195510 0.26290515
#> 735      6 7.668307 1.490157 -1.1195510 0.26290515
#> 736      5 7.668307 1.490157 -1.7906212 0.07335410
#> 737      6 7.668307 1.490157 -1.1195510 0.26290515
#> 738      7 7.668307 1.490157 -0.4484808 0.65380626
#> 739     10 7.668307 1.490157  1.5647299 0.11764625
#> 740      9 7.668307 1.490157  0.8936597 0.37150400
#> 741      9 7.668307 1.490157  0.8936597 0.37150400
#> 742      7 7.668307 1.490157 -0.4484808 0.65380626
#> 743      8 7.668307 1.490157  0.2225895 0.82385504
#> 744      7 7.668307 1.490157 -0.4484808 0.65380626
#> 745      9 7.668307 1.490157  0.8936597 0.37150400
#> 746      9 7.668307 1.490157  0.8936597 0.37150400
#> 747      6 7.668307 1.490157 -1.1195510 0.26290515
#> 748      9 7.668307 1.490157  0.8936597 0.37150400
#> 749      9 7.668307 1.490157  0.8936597 0.37150400
#> 750      6 7.668307 1.490157 -1.1195510 0.26290515
#> 751      8 7.668307 1.490157  0.2225895 0.82385504
#> 752      8 7.668307 1.490157  0.2225895 0.82385504
#> 753      9 7.668307 1.490157  0.8936597 0.37150400
#> 754      9 7.668307 1.490157  0.8936597 0.37150400
#> 755      7 7.668307 1.490157 -0.4484808 0.65380626
#> 756      9 7.668307 1.490157  0.8936597 0.37150400
#> 757     11 7.668307 1.490157  2.2358001 0.02536487
#> 758      7 7.668307 1.490157 -0.4484808 0.65380626
#> 759      9 7.668307 1.490157  0.8936597 0.37150400
#> 760      7 7.668307 1.490157 -0.4484808 0.65380626
#> 761      9 7.668307 1.490157  0.8936597 0.37150400
#> 762      7 7.668307 1.490157 -0.4484808 0.65380626
#> 763      8 7.668307 1.490157  0.2225895 0.82385504
#> 764      8 7.668307 1.490157  0.2225895 0.82385504
#> 765      4 7.668307 1.490157 -2.4616914 0.01382836
#> 766      8 7.668307 1.490157  0.2225895 0.82385504
#> 767      9 7.668307 1.490157  0.8936597 0.37150400
#> 768      8 7.668307 1.490157  0.2225895 0.82385504
#> 769     11 7.668307 1.490157  2.2358001 0.02536487
#> 770      8 7.668307 1.490157  0.2225895 0.82385504
#> 771     10 7.668307 1.490157  1.5647299 0.11764625
#> 772      7 7.668307 1.490157 -0.4484808 0.65380626
#> 773      6 7.668307 1.490157 -1.1195510 0.26290515
#> 774     10 7.668307 1.490157  1.5647299 0.11764625
#> 775      7 7.668307 1.490157 -0.4484808 0.65380626
#> 776      9 7.668307 1.490157  0.8936597 0.37150400
#> 777      8 7.668307 1.490157  0.2225895 0.82385504
#> 778      6 7.668307 1.490157 -1.1195510 0.26290515
#> 779      8 7.668307 1.490157  0.2225895 0.82385504
#> 780     10 7.668307 1.490157  1.5647299 0.11764625
#> 781     10 7.668307 1.490157  1.5647299 0.11764625
#> 782     10 7.668307 1.490157  1.5647299 0.11764625
#> 783      9 7.668307 1.490157  0.8936597 0.37150400
#> 784      6 7.668307 1.490157 -1.1195510 0.26290515
#> 785     10 7.668307 1.490157  1.5647299 0.11764625
#> 786      7 7.668307 1.490157 -0.4484808 0.65380626
#> 787      8 7.668307 1.490157  0.2225895 0.82385504
#> 788      9 7.668307 1.490157  0.8936597 0.37150400
#> 789     10 7.668307 1.490157  1.5647299 0.11764625
#> 790      5 7.668307 1.490157 -1.7906212 0.07335410
#> 791      9 7.668307 1.490157  0.8936597 0.37150400
#> 792      8 7.668307 1.490157  0.2225895 0.82385504
#> 793      8 7.668307 1.490157  0.2225895 0.82385504
#> 794      8 7.668307 1.490157  0.2225895 0.82385504
#> 795      7 7.668307 1.490157 -0.4484808 0.65380626
#> 796      7 7.668307 1.490157 -0.4484808 0.65380626
#> 797      6 7.668307 1.490157 -1.1195510 0.26290515
#> 798      8 7.668307 1.490157  0.2225895 0.82385504
#> 799      8 7.668307 1.490157  0.2225895 0.82385504
#> 800      9 7.668307 1.490157  0.8936597 0.37150400
#> 801      8 7.668307 1.490157  0.2225895 0.82385504
#> 802     10 7.668307 1.490157  1.5647299 0.11764625
#> 803      7 7.668307 1.490157 -0.4484808 0.65380626
#> 804      9 7.668307 1.490157  0.8936597 0.37150400
#> 805     10 7.668307 1.490157  1.5647299 0.11764625
#> 806      8 7.668307 1.490157  0.2225895 0.82385504
#> 807     10 7.668307 1.490157  1.5647299 0.11764625
#> 808      8 7.668307 1.490157  0.2225895 0.82385504
#> 809      7 7.668307 1.490157 -0.4484808 0.65380626
#> 810     10 7.668307 1.490157  1.5647299 0.11764625
#> 811     10 7.668307 1.490157  1.5647299 0.11764625
#> 812      9 7.668307 1.490157  0.8936597 0.37150400
#> 813      9 7.668307 1.490157  0.8936597 0.37150400
#> 814      5 7.668307 1.490157 -1.7906212 0.07335410
#> 815     10 7.668307 1.490157  1.5647299 0.11764625
#> 816     10 7.668307 1.490157  1.5647299 0.11764625
#> 817      9 7.668307 1.490157  0.8936597 0.37150400
#> 818     10 7.668307 1.490157  1.5647299 0.11764625
#> 819      9 7.668307 1.490157  0.8936597 0.37150400
#> 820      7 7.668307 1.490157 -0.4484808 0.65380626
#> 821      8 7.668307 1.490157  0.2225895 0.82385504
#> 822      7 7.668307 1.490157 -0.4484808 0.65380626
#> 823      6 7.668307 1.490157 -1.1195510 0.26290515
#> 824      5 7.668307 1.490157 -1.7906212 0.07335410
#> 825      7 7.668307 1.490157 -0.4484808 0.65380626
#> 826      7 7.668307 1.490157 -0.4484808 0.65380626
#> 827      9 7.668307 1.490157  0.8936597 0.37150400
#> 828      6 7.668307 1.490157 -1.1195510 0.26290515
#> 829      8 7.668307 1.490157  0.2225895 0.82385504
#> 830      9 7.668307 1.490157  0.8936597 0.37150400
#> 831      9 7.668307 1.490157  0.8936597 0.37150400
#> 832      9 7.668307 1.490157  0.8936597 0.37150400
#> 833      7 7.668307 1.490157 -0.4484808 0.65380626
#> 834      8 7.668307 1.490157  0.2225895 0.82385504
#> 835      8 7.668307 1.490157  0.2225895 0.82385504
#> 836      8 7.668307 1.490157  0.2225895 0.82385504
#> 837      9 7.668307 1.490157  0.8936597 0.37150400
#> 838      8 7.668307 1.490157  0.2225895 0.82385504
#> 839      8 7.668307 1.490157  0.2225895 0.82385504
#> 840      7 7.668307 1.490157 -0.4484808 0.65380626
#> 841      9 7.668307 1.490157  0.8936597 0.37150400
#> 842      9 7.668307 1.490157  0.8936597 0.37150400
#> 843      7 7.668307 1.490157 -0.4484808 0.65380626
#> 844     10 7.668307 1.490157  1.5647299 0.11764625
#> 845      9 7.668307 1.490157  0.8936597 0.37150400
#> 846      9 7.668307 1.490157  0.8936597 0.37150400
#> 847      9 7.668307 1.490157  0.8936597 0.37150400
#> 848      8 7.668307 1.490157  0.2225895 0.82385504
#> 849      5 7.668307 1.490157 -1.7906212 0.07335410
#> 850      9 7.668307 1.490157  0.8936597 0.37150400
#> 851     10 7.668307 1.490157  1.5647299 0.11764625
#> 852      8 7.668307 1.490157  0.2225895 0.82385504
#> 853      7 7.668307 1.490157 -0.4484808 0.65380626
#> 854     10 7.668307 1.490157  1.5647299 0.11764625
#> 855      7 7.668307 1.490157 -0.4484808 0.65380626
#> 856      9 7.668307 1.490157  0.8936597 0.37150400
#> 857      9 7.668307 1.490157  0.8936597 0.37150400
#> 858      7 7.668307 1.490157 -0.4484808 0.65380626
#> 859      8 7.668307 1.490157  0.2225895 0.82385504
#> 860     10 7.668307 1.490157  1.5647299 0.11764625
#> 861      8 7.668307 1.490157  0.2225895 0.82385504
#> 862      7 7.668307 1.490157 -0.4484808 0.65380626
#> 863      7 7.668307 1.490157 -0.4484808 0.65380626
#> 864      7 7.668307 1.490157 -0.4484808 0.65380626
#> 865      7 7.668307 1.490157 -0.4484808 0.65380626
#> 866      9 7.668307 1.490157  0.8936597 0.37150400
#> 867      6 7.668307 1.490157 -1.1195510 0.26290515
#> 868      8 7.668307 1.490157  0.2225895 0.82385504
#> 869      9 7.668307 1.490157  0.8936597 0.37150400
#> 870      8 7.668307 1.490157  0.2225895 0.82385504
#> 871      8 7.668307 1.490157  0.2225895 0.82385504
#> 872     10 7.668307 1.490157  1.5647299 0.11764625
#> 873      6 7.668307 1.490157 -1.1195510 0.26290515
#> 874      7 7.668307 1.490157 -0.4484808 0.65380626
#> 875      8 7.668307 1.490157  0.2225895 0.82385504
#> 876      8 7.668307 1.490157  0.2225895 0.82385504
#> 877      7 7.668307 1.490157 -0.4484808 0.65380626
plot(lsrq, sf = FastFood.sf, sig = 0.05)
#> Warning: bounding box has potentially an invalid value range for longlat data

# }

# Case 3: With a sf object (poligons)
library(lwgeom)
fname <- system.file("shape/nc.shp", package="sf")
nc <- sf::st_read(fname)
#> Reading layer `nc' from data source 
#>   `/home/runner/work/_temp/Library/sf/shape/nc.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 100 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
#> Geodetic CRS:  NAD27
listw <- spdep::poly2nb(as(nc,"Spatial"), queen = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they are planar
p <- c(1/6,3/6,2/6)
rho = 0.5
nc$fx <- dgp.spq(p = p, listw = listw, rho = rho)
plot(nc["fx"])

formula <- ~ fx
lsrq <- local.sp.runs.test(formula = formula, data = nc, listw = listw)
#> Warning: st_centroid assumes attributes are constant over geometries of x
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     runs.i      E.i     Std.i     z.value     p.value
#> 1        3 2.855152 0.8722689  0.16605945 0.868110166
#> 2        3 2.855152 0.8722689  0.16605945 0.868110166
#> 3        5 4.091919 1.1317511  0.80236794 0.422340153
#> 4        3 2.236768 0.7064182  1.08042568 0.279952664
#> 5        3 3.473535 1.0106752 -0.46853368 0.639402990
#> 6        3 2.855152 0.8722689  0.16605945 0.868110166
#> 7        3 2.855152 0.8722689  0.16605945 0.868110166
#> 8        5 4.091919 1.1317511  0.80236794 0.422340153
#> 9        3 3.473535 1.0106752 -0.46853368 0.639402990
#> 10       4 2.855152 0.8722689  1.31249497 0.189353181
#> 11       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 12       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 13       5 4.091919 1.1317511  0.80236794 0.422340153
#> 14       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 15       4 2.855152 0.8722689  1.31249497 0.189353181
#> 16       5 4.710303 1.2405813  0.23351712 0.815359874
#> 17       3 2.855152 0.8722689  0.16605945 0.868110166
#> 18       7 5.947071 1.4323964  0.73508234 0.462289347
#> 19       5 3.473535 1.0106752  1.51034151 0.130956304
#> 20       3 2.855152 0.8722689  0.16605945 0.868110166
#> 21       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 22       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 23       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 24       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 25       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 26       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 27       5 4.710303 1.2405813  0.23351712 0.815359874
#> 28       5 4.091919 1.1317511  0.80236794 0.422340153
#> 29       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 30       5 4.091919 1.1317511  0.80236794 0.422340153
#> 31       1 4.091919 1.1317511 -2.73197805 0.006295534
#> 32       4 2.855152 0.8722689  1.31249497 0.189353181
#> 33       2 4.091919 1.1317511 -1.84839155 0.064545720
#> 34       6 4.710303 1.2405813  1.03959088 0.298530015
#> 35       4 3.473535 1.0106752  0.52090392 0.602433708
#> 36       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 37       5 4.710303 1.2405813  0.23351712 0.815359874
#> 38       3 2.855152 0.8722689  0.16605945 0.868110166
#> 39       7 6.565455 1.5186493  0.28613944 0.774771326
#> 40       1 4.091919 1.1317511 -2.73197805 0.006295534
#> 41       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 42       4 4.710303 1.2405813 -0.57255663 0.566944931
#> 43       5 4.710303 1.2405813  0.23351712 0.815359874
#> 44       5 4.091919 1.1317511  0.80236794 0.422340153
#> 45       2 2.236768 0.7064182 -0.33516646 0.737499518
#> 46       6 4.710303 1.2405813  1.03959088 0.298530015
#> 47       6 4.710303 1.2405813  1.03959088 0.298530015
#> 48       5 5.947071 1.4323964 -0.66117921 0.508497395
#> 49       1 4.710303 1.2405813 -2.99077790 0.002782678
#> 50       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 51       5 5.328687 1.3401523 -0.24526083 0.806254475
#> 52       5 4.091919 1.1317511  0.80236794 0.422340153
#> 53       5 4.710303 1.2405813  0.23351712 0.815359874
#> 54       5 4.710303 1.2405813  0.23351712 0.815359874
#> 55       6 4.091919 1.1317511  1.68595444 0.091804576
#> 56       1 2.236768 0.7064182 -1.75075861 0.079987499
#> 57       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 58       5 3.473535 1.0106752  1.51034151 0.130956304
#> 59       1 3.473535 1.0106752 -2.44740888 0.014388750
#> 60       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 61       5 4.710303 1.2405813  0.23351712 0.815359874
#> 62       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 63       7 5.328687 1.3401523  1.24710688 0.212358312
#> 64       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 65       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 66       5 3.473535 1.0106752  1.51034151 0.130956304
#> 67       5 5.947071 1.4323964 -0.66117921 0.508497395
#> 68       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 69       6 4.091919 1.1317511  1.68595444 0.091804576
#> 70       2 4.710303 1.2405813 -2.18470415 0.028910546
#> 71       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 72       4 3.473535 1.0106752  0.52090392 0.602433708
#> 73       4 2.855152 0.8722689  1.31249497 0.189353181
#> 74       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 75       3 2.855152 0.8722689  0.16605945 0.868110166
#> 76       2 2.855152 0.8722689 -0.98037608 0.326900515
#> 77       3 2.236768 0.7064182  1.08042568 0.279952664
#> 78       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 79       5 5.328687 1.3401523 -0.24526083 0.806254475
#> 80       3 2.236768 0.7064182  1.08042568 0.279952664
#> 81       3 2.855152 0.8722689  0.16605945 0.868110166
#> 82       5 4.710303 1.2405813  0.23351712 0.815359874
#> 83       3 4.091919 1.1317511 -0.96480505 0.334642465
#> 84       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 85       1 3.473535 1.0106752 -2.44740888 0.014388750
#> 86       2 3.473535 1.0106752 -1.45797128 0.144848459
#> 87       4 3.473535 1.0106752  0.52090392 0.602433708
#> 88       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 89       1 3.473535 1.0106752 -2.44740888 0.014388750
#> 90       1 2.236768 0.7064182 -1.75075861 0.079987499
#> 91       3 4.710303 1.2405813 -1.37863039 0.168008742
#> 92       3 2.855152 0.8722689  0.16605945 0.868110166
#> 93       4 3.473535 1.0106752  0.52090392 0.602433708
#> 94       5 4.091919 1.1317511  0.80236794 0.422340153
#> 95       1 2.855152 0.8722689 -2.12681160 0.033435740
#> 96       4 4.091919 1.1317511 -0.08121856 0.935268142
#> 97       6 5.328687 1.3401523  0.50092302 0.616425301
#> 98       3 3.473535 1.0106752 -0.46853368 0.639402990
#> 99       1 2.236768 0.7064182 -1.75075861 0.079987499
#> 100      1 2.855152 0.8722689 -2.12681160 0.033435740
plot(lsrq, sf = nc)

# Version boot
lsrq <- local.sp.runs.test(formula = formula, data = nc, listw = listw,
                           distr ="bootstrap", nsim = 399)
#> Warning: st_centroid assumes attributes are constant over geometries of x
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     SRQ     EP.i     SdP.i zseudo.value pseudo.value
#> 1     3 2.919799 0.8166508   0.09820660  0.921768240
#> 2     3 2.849624 0.8491460   0.17709080  0.859437065
#> 3     5 4.072682 1.0877253   0.85252987  0.393920070
#> 4     3 2.182957 0.7257713   1.12575765  0.260268114
#> 5     3 3.436090 1.0076595  -0.43277539  0.665177955
#> 6     3 2.857143 0.8400424   0.17005945  0.864963386
#> 7     3 2.781955 0.8967138   0.24316020  0.807881296
#> 8     5 4.160401 1.0863871   0.77283591  0.439619498
#> 9     3 3.508772 1.0096510  -0.50390869  0.614325546
#> 10    4 2.819549 0.8550875   1.38050328  0.167431741
#> 11    2 3.388471 1.0282284  -1.35035285  0.176902828
#> 12    2 3.538847 1.0139081  -1.51773820  0.129080411
#> 13    5 4.085213 1.1464417   0.79793589  0.424907694
#> 14    3 3.353383 1.0360014  -0.34110328  0.733025835
#> 15    4 2.776942 0.8982785   1.36155735  0.173337622
#> 16    5 4.729323 1.1996303   0.22563342  0.821486543
#> 17    3 2.794486 0.8870196   0.23169025  0.816778603
#> 18    7 6.000000 1.3431382   0.74452505  0.456558893
#> 19    5 3.516291 0.9637189   1.53956650  0.123666057
#> 20    3 2.889724 0.8038036   0.13719234  0.890878769
#> 21    2 2.233083 0.6749713  -0.34532242  0.729851996
#> 22    4 4.045113 1.1421438  -0.03949834  0.968493078
#> 23    3 4.070175 1.1275837  -0.94908738  0.342576171
#> 24    4 4.032581 1.0896688  -0.02990033  0.976146544
#> 25    4 4.694236 1.2468017  -0.55681316  0.577655088
#> 26    3 4.100251 1.1386208  -0.96630122  0.333893475
#> 27    5 4.679198 1.2729672   0.25201120  0.801032404
#> 28    5 4.057644 1.1666149   0.80776943  0.419223324
#> 29    4 4.067669 1.1355084  -0.05959373  0.952479216
#> 30    5 3.984962 1.1882060   0.85426059  0.392960619
#> 31    1 4.082707 1.1007885  -2.80045323  0.005103090
#> 32    4 2.847118 0.8905904   1.29451455  0.195487745
#> 33    2 4.102757 1.1127256  -1.88973538  0.058793360
#> 34    6 4.701754 1.2045858   1.07775267  0.281144147
#> 35    4 3.416040 1.0501703   0.55606210  0.578168403
#> 36    4 4.741855 1.1950600  -0.62076769  0.534752485
#> 37    5 4.671679 1.2641063   0.25972563  0.795075424
#> 38    3 2.807018 0.8884241   0.21721885  0.828037798
#> 39    7 6.596491 1.5137851   0.26655617  0.789810905
#> 40    1 4.165414 1.1017149  -2.87316949  0.004063760
#> 41    3 3.446115 0.9881096  -0.45148363  0.651641022
#> 42    4 4.669173 1.2444155  -0.53774076  0.590756035
#> 43    5 4.644110 1.2635831   0.28165121  0.778210967
#> 44    5 4.057644 1.1360628   0.82949279  0.406825616
#> 45    2 2.288221 0.7261356  -0.39692385  0.691423615
#> 46    6 4.709273 1.2157630   1.06165991  0.288390105
#> 47    6 4.694236 1.2923205   1.01040291  0.312302294
#> 48    5 6.062657 1.3537901  -0.78494932  0.432483281
#> 49    1 4.864662 1.1911438  -3.24449643  0.001176585
#> 50    4 4.120301 1.1210924  -0.10730672  0.914545650
#> 51    5 5.250627 1.3080129  -0.19160863  0.848048782
#> 52    5 4.125313 1.1602009   0.75390969  0.450903451
#> 53    5 4.754386 1.2236466   0.20072301  0.840915168
#> 54    5 4.759398 1.2018644   0.20019022  0.841331812
#> 55    6 3.972431 1.1869228   1.70825675  0.087588712
#> 56    1 2.218045 0.7264391  -1.67673398  0.093594513
#> 57    3 4.804511 1.2943168  -1.39418053  0.163263097
#> 58    5 3.448622 1.0182959   1.52350460  0.127632511
#> 59    1 3.418546 1.0310540  -2.34570302  0.018991233
#> 60    2 2.882206 0.8528163  -1.03446138  0.300920524
#> 61    5 4.796992 1.1825324   0.17167184  0.863695522
#> 62    3 4.724311 1.2397055  -1.39090351  0.164254689
#> 63    7 5.290727 1.3638142   1.25330355  0.210095255
#> 64    2 3.431078 1.0246395  -1.39666463  0.162514444
#> 65    4 4.117794 1.0411914  -0.11313432  0.909924063
#> 66    5 3.458647 1.0261256   1.50210979  0.133068756
#> 67    5 5.944862 1.4586314  -0.64777310  0.517131718
#> 68    3 4.042607 1.0445788  -0.99811185  0.318225124
#> 69    6 4.157895 1.1016806   1.67208655  0.094507257
#> 70    2 4.674185 1.2457406  -2.14666318  0.031820106
#> 71    3 4.030075 1.1136872  -0.92492323  0.355005842
#> 72    4 3.471178 0.9815107   0.53878381  0.590036036
#> 73    4 2.889724 0.8784807   1.26385896  0.206280653
#> 74    3 4.739348 1.2729227  -1.36642103  0.171806851
#> 75    3 2.807018 0.8299367   0.23252673  0.816128929
#> 76    2 2.872180 0.8775268  -0.99390749  0.320267909
#> 77    3 2.225564 0.6976256   1.11010268  0.266954781
#> 78    3 4.112782 1.0912222  -1.01975745  0.307843507
#> 79    5 5.280702 1.3750847  -0.20413416  0.838248658
#> 80    3 2.190476 0.7255630   1.11571808  0.264542828
#> 81    3 2.909774 0.8721715   0.10344934  0.917606356
#> 82    5 4.749373 1.2490573   0.20065258  0.840970240
#> 83    3 4.067669 1.0694160  -0.99836656  0.318101643
#> 84    3 3.446115 1.0804237  -0.41290774  0.679674211
#> 85    1 3.466165 1.0858769  -2.27112790  0.023139236
#> 86    2 3.478697 0.9893515  -1.49461212  0.135015701
#> 87    4 3.438596 1.0373013   0.54121546  0.588359080
#> 88    3 4.659148 1.2274541  -1.35169854  0.176471773
#> 89    1 3.446115 1.0255425  -2.38519157  0.017070229
#> 90    1 2.243108 0.6971200  -1.78320494  0.074552948
#> 91    3 4.656642 1.2318633  -1.34482585  0.178681481
#> 92    3 2.817043 0.8848872   0.20675786  0.836198964
#> 93    4 3.453634 1.0405017   0.52509853  0.599514698
#> 94    5 4.135338 1.1415978   0.75741356  0.448802137
#> 95    1 2.892231 0.8511977  -2.22302133  0.026214362
#> 96    4 4.230576 1.1306455  -0.20393346  0.838405501
#> 97    6 5.360902 1.3617441   0.46932295  0.638838814
#> 98    3 3.556391 0.9543358  -0.58301385  0.559883979
#> 99    1 2.260652 0.6475548  -1.94678758  0.051560207
#> 100   1 2.859649 0.8389697  -2.21658664  0.026651351
plot(lsrq, sf = nc)


# Case 4: With isolated areas
library(lwgeom)
data(provinces_spain)
listw <- spdep::poly2nb(as(provinces_spain,"Spatial"), queen = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they are planar
provinces_spain$Male2Female <- factor(provinces_spain$Male2Female > 100)
levels(provinces_spain$Male2Female) = c("men","woman")
plot(provinces_spain["Male2Female"])

formula <- ~ Male2Female
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw)
#> Warning: st_centroid assumes attributes are constant over geometries of x
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>    runs.i      E.i     Std.i     z.value    p.value
#> 1       3 2.963265 1.2181954  0.03015501 0.97594343
#> 2       3 3.748571 1.4356803 -0.52140538 0.60208441
#> 3       3 2.177959 0.9361800  0.87807987 0.37990038
#> 4       3 1.785306 0.7491685  1.62138936 0.10493416
#> 5       4 3.355918 1.3328119  0.48325020 0.62891810
#> 6       3 3.355918 1.3328119 -0.26704320 0.78943590
#> 7       0 1.000000       NaN         NaN        NaN
#> 8       3 2.177959 0.9361800  0.87807987 0.37990038
#> 9       4 4.141224 1.5291733 -0.09235349 0.92641719
#> 10      2 2.570612 1.0881246 -0.52439971 0.60000056
#> 11      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 12      3 2.177959 0.9361800  0.87807987 0.37990038
#> 13      5 3.355918 1.3328119  1.23354359 0.21737302
#> 14      1 3.355918 1.3328119 -1.76762999 0.07712278
#> 15      1 1.785306 0.7491685 -1.04823694 0.29452945
#> 16      5 3.748571 1.4356803  0.87166242 0.38339257
#> 17      2 1.785306 0.7491685  0.28657621 0.77443683
#> 18      5 3.355918 1.3328119  1.23354359 0.21737302
#> 19      5 3.355918 1.3328119  1.23354359 0.21737302
#> 20      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 21      2 2.177959 0.9361800 -0.19009078 0.84923800
#> 22      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 23      1 3.748571 1.4356803 -1.91447317 0.05555972
#> 24      4 2.963265 1.2181954  0.85104136 0.39474638
#> 25      5 2.963265 1.2181954  1.67192771 0.09453858
#> 26      1 2.963265 1.2181954 -1.61161769 0.10704516
#> 27      2 2.963265 1.2181954 -0.79073134 0.42910078
#> 28      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 29      4 2.570612 1.0881246  1.31362503 0.18897242
#> 30      2 2.963265 1.2181954 -0.79073134 0.42910078
#> 31      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 32      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 33      3 2.570612 1.0881246  0.39461266 0.69312877
#> 34      0 1.000000       NaN         NaN        NaN
#> 35      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 36      3 2.570612 1.0881246  0.39461266 0.69312877
#> 37      0 1.000000       NaN         NaN        NaN
#> 38      3 2.963265 1.2181954  0.03015501 0.97594343
#> 39      3 3.355918 1.3328119 -0.26704320 0.78943590
#> 40      1 2.963265 1.2181954 -1.61161769 0.10704516
#> 41      5 2.963265 1.2181954  1.67192771 0.09453858
#> 42      5 3.355918 1.3328119  1.23354359 0.21737302
#> 43      4 3.355918 1.3328119  0.48325020 0.62891810
#> 44      4 2.963265 1.2181954  0.85104136 0.39474638
#> 45      5 3.748571 1.4356803  0.87166242 0.38339257
#> 46      3 2.570612 1.0881246  0.39461266 0.69312877
#> 47      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 48      8 4.141224 1.5291733  2.52343903 0.01162132
#> 49      5 2.963265 1.2181954  1.67192771 0.09453858
#> 50      1 2.177959 0.9361800 -1.25826142 0.20829723
plot(lsrq, sf = provinces_spain, sig = 0.1)


# Boots Version
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw,
                           distr ="bootstrap", nsim = 199)
#> Warning: st_centroid assumes attributes are constant over geometries of x
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>    SRQ     EP.i     SdP.i zseudo.value pseudo.value
#> 1    3 2.904523 1.2333455   0.07741334   0.93829473
#> 2    3 3.748744 1.3696516  -0.54666730   0.58460732
#> 3    3 2.120603 0.9241582   0.95156545   0.34131741
#> 4    3 1.768844 0.7432077   1.65654326   0.09761185
#> 5    4 3.296482 1.2900308   0.54534945   0.58551320
#> 6    3 3.487437 1.2667436  -0.38479546   0.70038896
#> 7    0 0.000000 0.0000000          NaN          NaN
#> 8    3 2.266332 0.9125512   0.80397503   0.42141140
#> 9    4 4.160804 1.5256300  -0.10540172   0.91605705
#> 10   2 2.623116 1.1297932  -0.55153065   0.58126996
#> 11   1 2.261307 0.9385462  -1.34389390   0.17898270
#> 12   3 2.211055 1.0128859   0.77890782   0.43603401
#> 13   5 3.467337 1.3362424   1.14699493   0.25138372
#> 14   1 3.457286 1.2897947  -1.90517640   0.05675714
#> 15   1 1.723618 0.7170330  -1.00918379   0.31288650
#> 16   5 3.814070 1.4179951   0.83634255   0.40296222
#> 17   2 1.824121 0.7681942   0.22895174   0.81890643
#> 18   5 3.195980 1.2700051   1.42048252   0.15546725
#> 19   5 3.552764 1.4688620   0.98527719   0.32448793
#> 20   1 2.221106 0.9163811  -1.33253024   0.18268601
#> 21   2 2.100503 0.8989049  -0.11180550   0.91097763
#> 22   1 2.567839 1.0797357  -1.45205833   0.14648539
#> 23   1 3.839196 1.5189947  -1.86912834   0.06160496
#> 24   4 3.005025 1.1827783   0.84121840   0.40022559
#> 25   5 2.919598 1.2364693   1.68253426   0.09246529
#> 26   1 2.869347 1.1472475  -1.62941887   0.10322438
#> 27   2 3.030151 1.2427956  -0.82889798   0.40716214
#> 28   1 2.633166 1.1464066  -1.42459567   0.15427411
#> 29   4 2.452261 1.0132867   1.52744402   0.12665064
#> 30   2 3.035176 1.2406291  -0.83439597   0.40405789
#> 31   1 2.603015 1.0580098  -1.51512304   0.12974125
#> 32   1 2.110553 0.9308621  -1.19303683   0.23285495
#> 33   3 2.547739 1.0232067   0.44200386   0.65848641
#> 34   0 0.000000 0.0000000          NaN          NaN
#> 35   1 2.125628 0.8985378  -1.25273320   0.21030282
#> 36   3 2.587940 1.1595259   0.35536964   0.72231269
#> 37   0 0.000000 0.0000000          NaN          NaN
#> 38   3 2.864322 1.2499226   0.10854944   0.91355987
#> 39   3 3.417085 1.4431691  -0.28900663   0.77257630
#> 40   1 2.974874 1.1825208  -1.67005468   0.09490855
#> 41   5 2.934673 1.1852433   1.74253384   0.08141508
#> 42   5 3.351759 1.3768961   1.19707015   0.23127922
#> 43   4 3.452261 1.3013134   0.42091220   0.67381919
#> 44   4 2.974874 1.1739478   0.87322932   0.38253809
#> 45   5 3.944724 1.4536474   0.72595073   0.46786897
#> 46   3 2.648241 1.1750282   0.29936199   0.76466386
#> 47   1 2.497487 1.0292410  -1.45494340   0.14568493
#> 48   8 4.130653 1.5995628   2.41900273   0.01556312
#> 49   5 2.984925 1.2491508   1.61315625   0.10671056
#> 50   1 2.251256 0.9832876  -1.27252322   0.20318728
plot(lsrq, sf = provinces_spain, sig = 0.10)


# Case 5: SRQ test based on a distance matrix (inverse distance)
# \donttest{
library(lwgeom)
N <- 100
cx <- runif(N)
cy <- runif(N)
coor <- as.data.frame(cbind(cx,cy))
coor <- sf::st_as_sf(coor,coords = c("cx","cy"))
n = dim(coor)[1]
dis <- 1/matrix(as.numeric(sf::st_distance(coor,coor)), ncol = n, nrow = n)
diag(dis) <- 0
dis <- (dis < quantile(dis,.10))*dis
p <- c(1/6,3/6,2/6)
rho <- 0.5
fx <- dgp.spq(p = p, listw = dis, rho = rho)
lsrq <- local.sp.runs.test(fx = fx, listw = dis)
print(lsrq)
#>     runs.i       E.i     Std.i     z.value    p.value
#> 1        2  2.855152 0.8722689 -0.98037608 0.32690051
#> 2        5  4.091919 1.1317511  0.80236794 0.42234015
#> 3        4  3.473535 1.0106752  0.52090392 0.60243371
#> 4        4  3.473535 1.0106752  0.52090392 0.60243371
#> 5       17 14.604444 2.3462098  1.02103210 0.30723923
#> 6       14 14.604444 2.3462098 -0.25762591 0.79669563
#> 7       19 22.643434 2.9150932 -1.24985177 0.21135370
#> 8        3  2.236768 0.7064182  1.08042568 0.27995266
#> 9        3  3.473535 1.0106752 -0.46853368 0.63940299
#> 10       0  1.000000       NaN         NaN        NaN
#> 11      17 22.025051 2.8765991 -1.74687204 0.08065954
#> 12       0  1.000000       NaN         NaN        NaN
#> 13       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 14       0  1.000000       NaN         NaN        NaN
#> 15       0  1.000000       NaN         NaN        NaN
#> 16       0  1.000000       NaN         NaN        NaN
#> 17       6  5.328687 1.3401523  0.50092302 0.61642530
#> 18       4  3.473535 1.0106752  0.52090392 0.60243371
#> 19      16 17.696364 2.5846046 -0.65633392 0.51160930
#> 20       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 21       4  3.473535 1.0106752  0.52090392 0.60243371
#> 22       3  2.236768 0.7064182  1.08042568 0.27995266
#> 23      30 23.261818 2.9528798  2.28190184 0.02249514
#> 24       8  7.183838 1.5998803  0.51013918 0.60995396
#> 25       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 26       0  1.000000       NaN         NaN        NaN
#> 27       4  3.473535 1.0106752  0.52090392 0.60243371
#> 28       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 29       0  1.000000       NaN         NaN        NaN
#> 30      25 24.498586 3.0264361  0.16567808 0.86841029
#> 31       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 32       4  4.091919 1.1317511 -0.08121856 0.93526814
#> 33       4  2.855152 0.8722689  1.31249497 0.18935318
#> 34       9  9.038990 1.8199699 -0.02142338 0.98290793
#> 35       4  3.473535 1.0106752  0.52090392 0.60243371
#> 36       6  7.183838 1.5998803 -0.73995436 0.45932769
#> 37       9  8.420606 1.7500327  0.33107607 0.74058703
#> 38       3  2.855152 0.8722689  0.16605945 0.86811017
#> 39       0  1.000000       NaN         NaN        NaN
#> 40       4  3.473535 1.0106752  0.52090392 0.60243371
#> 41       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 42       9  9.038990 1.8199699 -0.02142338 0.98290793
#> 43       9  6.565455 1.5186493  1.60309920 0.10891276
#> 44      12  9.038990 1.8199699  1.62695551 0.10374655
#> 45       3  2.236768 0.7064182  1.08042568 0.27995266
#> 46       3  2.855152 0.8722689  0.16605945 0.86811017
#> 47       8  6.565455 1.5186493  0.94461932 0.34485326
#> 48       9  7.183838 1.5998803  1.13518595 0.25629741
#> 49      11 10.275758 1.9514092  0.37113816 0.71053463
#> 50       8  7.802222 1.6768193  0.11794817 0.90610872
#> 51       5  3.473535 1.0106752  1.51034151 0.13095630
#> 52       5  6.565455 1.5186493 -1.03082032 0.30262509
#> 53       5  4.710303 1.2405813  0.23351712 0.81535987
#> 54       9  9.657374 1.8869954 -0.34837061 0.72756187
#> 55       7  7.802222 1.6768193 -0.47841899 0.63235202
#> 56       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 57       5  4.091919 1.1317511  0.80236794 0.42234015
#> 58       0  1.000000       NaN         NaN        NaN
#> 59       0  1.000000       NaN         NaN        NaN
#> 60       5  5.328687 1.3401523 -0.24526083 0.80625447
#> 61       8  8.420606 1.7500327 -0.24034183 0.81006527
#> 62       9  7.802222 1.6768193  0.71431534 0.47503221
#> 63       0  1.000000       NaN         NaN        NaN
#> 64      14 11.512525 2.0733657  1.19972796 0.23024501
#> 65      10 10.894141 2.0134619 -0.44408161 0.65698359
#> 66      12 10.275758 1.9514092  0.88358834 0.37691847
#> 67       0  1.000000       NaN         NaN        NaN
#> 68       5  5.328687 1.3401523 -0.24526083 0.80625447
#> 69       0  1.000000       NaN         NaN        NaN
#> 70       4  3.473535 1.0106752  0.52090392 0.60243371
#> 71       8  9.657374 1.8869954 -0.87831360 0.37977356
#> 72       4  3.473535 1.0106752  0.52090392 0.60243371
#> 73       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 74       1  2.855152 0.8722689 -2.12681160 0.03343574
#> 75      15 16.459596 2.4927161 -0.58554439 0.55818172
#> 76       5  6.565455 1.5186493 -1.03082032 0.30262509
#> 77       5  3.473535 1.0106752  1.51034151 0.13095630
#> 78      18 20.788283 2.7973712 -0.99675111 0.31888533
#> 79       8  5.947071 1.4323964  1.43321312 0.15179694
#> 80       4  2.855152 0.8722689  1.31249497 0.18935318
#> 81       9  7.802222 1.6768193  0.71431534 0.47503221
#> 82      14 12.749293 2.1874260  0.57177115 0.56747702
#> 83       0  1.000000       NaN         NaN        NaN
#> 84       5  4.091919 1.1317511  0.80236794 0.42234015
#> 85      16 17.696364 2.5846046 -0.65633392 0.51160930
#> 86       6  7.183838 1.5998803 -0.73995436 0.45932769
#> 87       5  4.091919 1.1317511  0.80236794 0.42234015
#> 88       0  1.000000       NaN         NaN        NaN
#> 89       0  1.000000       NaN         NaN        NaN
#> 90       4  3.473535 1.0106752  0.52090392 0.60243371
#> 91       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 92      11 11.512525 2.0733657 -0.24719482 0.80475745
#> 93      18 17.696364 2.5846046  0.11747885 0.90648061
#> 94       7  6.565455 1.5186493  0.28613944 0.77477133
#> 95       6  6.565455 1.5186493 -0.37234044 0.70963939
#> 96       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 97      14 15.841212 2.4451048 -0.75301970 0.45143807
#> 98      24 21.406667 2.8373687  0.91399235 0.36072086
#> 99       6  5.947071 1.4323964  0.03695157 0.97052362
#> 100      0  1.000000       NaN         NaN        NaN
plot(lsrq, coor = cbind(cx,cy), sig = 0.05)

lsrq <- local.sp.runs.test(fx = fx, listw = dis, data = )
print(lsrq)
#>     runs.i       E.i     Std.i     z.value    p.value
#> 1        2  2.855152 0.8722689 -0.98037608 0.32690051
#> 2        5  4.091919 1.1317511  0.80236794 0.42234015
#> 3        4  3.473535 1.0106752  0.52090392 0.60243371
#> 4        4  3.473535 1.0106752  0.52090392 0.60243371
#> 5       17 14.604444 2.3462098  1.02103210 0.30723923
#> 6       14 14.604444 2.3462098 -0.25762591 0.79669563
#> 7       19 22.643434 2.9150932 -1.24985177 0.21135370
#> 8        3  2.236768 0.7064182  1.08042568 0.27995266
#> 9        3  3.473535 1.0106752 -0.46853368 0.63940299
#> 10       0  1.000000       NaN         NaN        NaN
#> 11      17 22.025051 2.8765991 -1.74687204 0.08065954
#> 12       0  1.000000       NaN         NaN        NaN
#> 13       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 14       0  1.000000       NaN         NaN        NaN
#> 15       0  1.000000       NaN         NaN        NaN
#> 16       0  1.000000       NaN         NaN        NaN
#> 17       6  5.328687 1.3401523  0.50092302 0.61642530
#> 18       4  3.473535 1.0106752  0.52090392 0.60243371
#> 19      16 17.696364 2.5846046 -0.65633392 0.51160930
#> 20       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 21       4  3.473535 1.0106752  0.52090392 0.60243371
#> 22       3  2.236768 0.7064182  1.08042568 0.27995266
#> 23      30 23.261818 2.9528798  2.28190184 0.02249514
#> 24       8  7.183838 1.5998803  0.51013918 0.60995396
#> 25       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 26       0  1.000000       NaN         NaN        NaN
#> 27       4  3.473535 1.0106752  0.52090392 0.60243371
#> 28       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 29       0  1.000000       NaN         NaN        NaN
#> 30      25 24.498586 3.0264361  0.16567808 0.86841029
#> 31       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 32       4  4.091919 1.1317511 -0.08121856 0.93526814
#> 33       4  2.855152 0.8722689  1.31249497 0.18935318
#> 34       9  9.038990 1.8199699 -0.02142338 0.98290793
#> 35       4  3.473535 1.0106752  0.52090392 0.60243371
#> 36       6  7.183838 1.5998803 -0.73995436 0.45932769
#> 37       9  8.420606 1.7500327  0.33107607 0.74058703
#> 38       3  2.855152 0.8722689  0.16605945 0.86811017
#> 39       0  1.000000       NaN         NaN        NaN
#> 40       4  3.473535 1.0106752  0.52090392 0.60243371
#> 41       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 42       9  9.038990 1.8199699 -0.02142338 0.98290793
#> 43       9  6.565455 1.5186493  1.60309920 0.10891276
#> 44      12  9.038990 1.8199699  1.62695551 0.10374655
#> 45       3  2.236768 0.7064182  1.08042568 0.27995266
#> 46       3  2.855152 0.8722689  0.16605945 0.86811017
#> 47       8  6.565455 1.5186493  0.94461932 0.34485326
#> 48       9  7.183838 1.5998803  1.13518595 0.25629741
#> 49      11 10.275758 1.9514092  0.37113816 0.71053463
#> 50       8  7.802222 1.6768193  0.11794817 0.90610872
#> 51       5  3.473535 1.0106752  1.51034151 0.13095630
#> 52       5  6.565455 1.5186493 -1.03082032 0.30262509
#> 53       5  4.710303 1.2405813  0.23351712 0.81535987
#> 54       9  9.657374 1.8869954 -0.34837061 0.72756187
#> 55       7  7.802222 1.6768193 -0.47841899 0.63235202
#> 56       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 57       5  4.091919 1.1317511  0.80236794 0.42234015
#> 58       0  1.000000       NaN         NaN        NaN
#> 59       0  1.000000       NaN         NaN        NaN
#> 60       5  5.328687 1.3401523 -0.24526083 0.80625447
#> 61       8  8.420606 1.7500327 -0.24034183 0.81006527
#> 62       9  7.802222 1.6768193  0.71431534 0.47503221
#> 63       0  1.000000       NaN         NaN        NaN
#> 64      14 11.512525 2.0733657  1.19972796 0.23024501
#> 65      10 10.894141 2.0134619 -0.44408161 0.65698359
#> 66      12 10.275758 1.9514092  0.88358834 0.37691847
#> 67       0  1.000000       NaN         NaN        NaN
#> 68       5  5.328687 1.3401523 -0.24526083 0.80625447
#> 69       0  1.000000       NaN         NaN        NaN
#> 70       4  3.473535 1.0106752  0.52090392 0.60243371
#> 71       8  9.657374 1.8869954 -0.87831360 0.37977356
#> 72       4  3.473535 1.0106752  0.52090392 0.60243371
#> 73       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 74       1  2.855152 0.8722689 -2.12681160 0.03343574
#> 75      15 16.459596 2.4927161 -0.58554439 0.55818172
#> 76       5  6.565455 1.5186493 -1.03082032 0.30262509
#> 77       5  3.473535 1.0106752  1.51034151 0.13095630
#> 78      18 20.788283 2.7973712 -0.99675111 0.31888533
#> 79       8  5.947071 1.4323964  1.43321312 0.15179694
#> 80       4  2.855152 0.8722689  1.31249497 0.18935318
#> 81       9  7.802222 1.6768193  0.71431534 0.47503221
#> 82      14 12.749293 2.1874260  0.57177115 0.56747702
#> 83       0  1.000000       NaN         NaN        NaN
#> 84       5  4.091919 1.1317511  0.80236794 0.42234015
#> 85      16 17.696364 2.5846046 -0.65633392 0.51160930
#> 86       6  7.183838 1.5998803 -0.73995436 0.45932769
#> 87       5  4.091919 1.1317511  0.80236794 0.42234015
#> 88       0  1.000000       NaN         NaN        NaN
#> 89       0  1.000000       NaN         NaN        NaN
#> 90       4  3.473535 1.0106752  0.52090392 0.60243371
#> 91       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 92      11 11.512525 2.0733657 -0.24719482 0.80475745
#> 93      18 17.696364 2.5846046  0.11747885 0.90648061
#> 94       7  6.565455 1.5186493  0.28613944 0.77477133
#> 95       6  6.565455 1.5186493 -0.37234044 0.70963939
#> 96       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 97      14 15.841212 2.4451048 -0.75301970 0.45143807
#> 98      24 21.406667 2.8373687  0.91399235 0.36072086
#> 99       6  5.947071 1.4323964  0.03695157 0.97052362
#> 100      0  1.000000       NaN         NaN        NaN
plot(lsrq, sf = coor)

# Version boots
lsrq <- local.sp.runs.test(fx = fx, listw = dis, data = coor,
                           distr ="bootstrap", nsim = 299)
print(lsrq)
#>     SRQ      EP.i     SdP.i zseudo.value pseudo.value
#> 1     2  2.849498 0.8399174  -1.01140705   0.31182165
#> 2     5  4.086957 1.1952635   0.76388469   0.44493596
#> 3     4  3.484950 0.9910375   0.51970806   0.60326707
#> 4     4  3.501672 0.9945306   0.50106829   0.61632306
#> 5    17 14.759197 2.3030926   0.97295378   0.33057627
#> 6    14 14.585284 2.3804117  -0.24587523   0.80577882
#> 7    19 22.729097 2.9028202  -1.28464620   0.19891594
#> 8     3  2.277592 0.6901995   1.04666549   0.29525389
#> 9     3  3.464883 1.0139650  -0.45848026   0.64660744
#> 10    0  0.000000 0.0000000          NaN          NaN
#> 11   17 22.053512 2.8947672  -1.74574027   0.08085609
#> 12    0  0.000000 0.0000000          NaN          NaN
#> 13    9 10.451505 1.8245592  -0.79553737   0.42630098
#> 14    0  0.000000 0.0000000          NaN          NaN
#> 15    0  0.000000 0.0000000          NaN          NaN
#> 16    0  0.000000 0.0000000          NaN          NaN
#> 17    6  5.334448 1.3368238   0.49786055   0.61858234
#> 18    4  3.498328 1.0012562   0.50104283   0.61634098
#> 19   16 17.652174 2.5526839  -0.64723013   0.51748301
#> 20    2  2.879599 0.8585643  -1.02449941   0.30559945
#> 21    4  3.468227 0.9735567   0.54621635   0.58491723
#> 22    3  2.230769 0.7306266   1.05283712   0.29241565
#> 23   30 23.301003 3.0294470   2.21129354   0.02701552
#> 24    8  7.207358 1.6355364   0.48463743   0.62793356
#> 25    9 10.274247 1.8676976  -0.68225579   0.49507723
#> 26    0  0.000000 0.0000000          NaN          NaN
#> 27    4  3.444816 1.0196714   0.54447340   0.58611575
#> 28    1  2.180602 0.7558441  -1.56196496   0.11829624
#> 29    0  0.000000 0.0000000          NaN          NaN
#> 30   25 24.665552 3.2966096   0.10145216   0.91919153
#> 31    2  2.297659 0.6915316  -0.43043421   0.66687982
#> 32    4  4.096990 1.1617322  -0.08348737   0.93346402
#> 33    4  2.953177 0.8381517   1.24896573   0.21167761
#> 34    9  8.859532 1.8153894   0.07737636   0.93832415
#> 35    4  3.474916 0.9806207   0.53546044   0.59233150
#> 36    6  7.270903 1.5337991  -0.82859807   0.40733188
#> 37    9  8.525084 1.7499395   0.27139018   0.78609095
#> 38    3  2.856187 0.8800855   0.16340765   0.87019748
#> 39    0  0.000000 0.0000000          NaN          NaN
#> 40    4  3.484950 0.9600795   0.53646618   0.59163640
#> 41    1  1.591973 0.4922920  -1.20248386   0.22917612
#> 42    9  8.926421 1.7933334   0.04102896   0.96727281
#> 43    9  6.729097 1.4366451   1.58069866   0.11394695
#> 44   12  9.123746 1.6952573   1.69664757   0.08976331
#> 45    3  2.270903 0.7119706   1.02405484   0.30580937
#> 46    3  2.886288 0.8749569   0.12996340   0.89659538
#> 47    8  6.357860 1.3618841   1.20578577   0.22790010
#> 48    9  7.267559 1.4684550   1.17977157   0.23809108
#> 49   11 10.244147 1.8977002   0.39829940   0.69040950
#> 50    8  7.739130 1.6665402   0.15653362   0.87561242
#> 51    5  3.551839 1.0329252   1.40199939   0.16091543
#> 52    5  6.628763 1.5476684  -1.05239765   0.29261714
#> 53    5  4.655518 1.2281901   0.28047905   0.77910999
#> 54    9  9.822742 1.8075210  -0.45517728   0.64898171
#> 55    7  7.658863 1.6211728  -0.40641125   0.68444046
#> 56    2  2.301003 0.7256326  -0.41481510   0.67827726
#> 57    5  4.173913 1.1800303   0.70005571   0.48389252
#> 58    0  0.000000 0.0000000          NaN          NaN
#> 59    0  0.000000 0.0000000          NaN          NaN
#> 60    5  5.331104 1.3538669  -0.24456148   0.80679600
#> 61    8  8.394649 1.6193373  -0.24371009   0.80745536
#> 62    9  7.816054 1.5894819   0.74486313   0.45635447
#> 63    0  0.000000 0.0000000          NaN          NaN
#> 64   14 11.688963 1.9559525   1.18154033   0.23738814
#> 65   10 11.100334 1.9772107  -0.55650843   0.57786333
#> 66   12 10.197324 2.0459141   0.88111009   0.37825824
#> 67    0  0.000000 0.0000000          NaN          NaN
#> 68    5  5.374582 1.3855036  -0.27035797   0.78688487
#> 69    0  0.000000 0.0000000          NaN          NaN
#> 70    4  3.481605 0.9773420   0.53041273   0.59582580
#> 71    8  9.802676 1.7507025  -1.02968699   0.30315697
#> 72    4  3.628763 0.9620180   0.38589450   0.69957481
#> 73    1  2.250836 0.7422695  -1.68515082   0.09195948
#> 74    1  2.846154 0.8687781  -2.12500039   0.03358658
#> 75   15 16.605351 2.3065645  -0.69599232   0.48643364
#> 76    5  6.575251 1.5228207  -1.03442965   0.30093535
#> 77    5  3.488294 1.0211012   1.48046601   0.13874893
#> 78   18 20.715719 2.7458548  -0.98902501   0.32265090
#> 79    8  5.913043 1.4257214   1.46378981   0.14325139
#> 80    4  2.926421 0.7823156   1.37230883   0.16996732
#> 81    9  7.896321 1.6525209   0.66787593   0.50421280
#> 82   14 12.528428 2.1616769   0.68075480   0.49602665
#> 83    0  0.000000 0.0000000          NaN          NaN
#> 84    5  4.076923 1.0825504   0.85268726   0.39383276
#> 85   16 17.555184 2.7206885  -0.57161412   0.56758343
#> 86    6  7.237458 1.5262144  -0.81080233   0.41747920
#> 87    5  4.063545 1.2148309   0.77085199   0.44079467
#> 88    0  0.000000 0.0000000          NaN          NaN
#> 89    0  0.000000 0.0000000          NaN          NaN
#> 90    4  3.434783 1.0190769   0.55463666   0.57914321
#> 91    1  1.622074 0.4856820  -1.28082498   0.20025515
#> 92   11 11.628763 2.0380546  -0.30851114   0.75769343
#> 93   18 17.692308 2.6858393   0.11456095   0.90879313
#> 94    7  6.732441 1.5354812   0.17425061   0.86166851
#> 95    6  6.762542 1.4402419  -0.52945396   0.59649057
#> 96    2  2.859532 0.8901028  -0.96565449   0.33421710
#> 97   14 16.053512 2.4502731  -0.83807462   0.40198880
#> 98   24 21.254181 2.8735558   0.95554761   0.33930084
#> 99    6  6.127090 1.3844420  -0.09179893   0.92685779
#> 100   0  0.000000 0.0000000          NaN          NaN
plot(lsrq, sf = coor)


# SRQ test based on inverse distance
library(lwgeom)
data("FastFood.sf")
sf::sf_use_s2(FALSE)
n = dim(FastFood.sf)[1]
dis <- 1000000/matrix(as.numeric(
          sf::st_distance(FastFood.sf, FastFood.sf)),
          ncol = n, nrow = n)
#> Warning: bounding box has potentially an invalid value range for longlat data
#> Warning: bounding box has potentially an invalid value range for longlat data
#> Warning: bounding box has potentially an invalid value range for longlat data
diag(dis) <- 0
dis <- (dis < quantile(dis,.01))*dis
formula <- ~ Type
lsrq <- local.sp.runs.test(formula = formula, data = FastFood.sf, listw = dis)
#> Warning: st_centroid assumes attributes are constant over geometries of x
#> Warning: bounding box has potentially an invalid value range for longlat data
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     runs.i       E.i      Std.i       z.value     p.value
#> 1        8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 2        2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 3        3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 4        8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 5        6  7.001476 1.41369228 -7.084116e-01 0.478689660
#> 6        5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 7        5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 8        5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 9        8 11.669291 1.88488922 -1.946688e+00 0.051572177
#> 10      16 22.338582 2.66558409 -2.377933e+00 0.017409967
#> 11      26 21.004920 2.58094570  1.935368e+00 0.052945152
#> 12       3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 13       1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 14       1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 15       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 16       2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 17       4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 18       7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 19       4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 20      30 25.005904 2.82726846  1.766403e+00 0.077328250
#> 21       2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 22       6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 23       3  5.000984 1.15429461 -1.733512e+00 0.083004632
#> 24       4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 25       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 26       5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 27       2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 28       1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 29       4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 30       2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 31       8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 32       5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 33       9  7.001476 1.41369228  1.413691e+00 0.157452675
#> 34       1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 35      12  9.668799 1.69902630  1.372081e+00 0.170038313
#> 36      27 25.672735 2.86626456  4.630644e-01 0.643318223
#> 37       5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 38       1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 39       4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 40       4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 41       2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 42       2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 43       8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 44       6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 45       8  8.335137 1.56288494 -2.144351e-01 0.830207752
#> 46       8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 47       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 48       4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 49       2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 50       7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 51       2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 52       5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 53      11  9.668799 1.69902630  7.835083e-01 0.433328678
#> 54       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 55      13 13.002952 1.99922042 -1.476654e-03 0.998821801
#> 56       0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 57       2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 58       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 59       4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 60       3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 61       3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 62       2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 63       2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 64       5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 65       1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 66       4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 67       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 68       3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 69       9  7.001476 1.41369228  1.413691e+00 0.157452675
#> 70       8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 71       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 72       3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 73       2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 74       7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 75       3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 76      18 15.670275 2.21020923  1.054074e+00 0.291848820
#> 77      12 11.669291 1.88488922  1.754529e-01 0.860723812
#> 78      28 29.006888 3.05378310 -3.297184e-01 0.741612777
#> 79      14 17.670767 2.35608263 -1.557996e+00 0.119234240
#> 80       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 81      23 22.338582 2.66558409  2.481326e-01 0.804031790
#> 82      18 19.004428 2.44850757 -4.102206e-01 0.681644134
#> 83       3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 84      22 22.338582 2.66558409 -1.270197e-01 0.898924830
#> 85       6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 86       4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 87       4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 88       8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 89       4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 90       4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 91       1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 92       5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 93       5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 94      24 23.005412 2.70691089  3.674254e-01 0.713301756
#> 95       3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 96       5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 97       3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 98       3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 99      10  9.668799 1.69902630  1.949359e-01 0.845443130
#> 100      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 101      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 102     10  7.668307 1.49015700  1.564730e+00 0.117646250
#> 103      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 104      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 105      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 106      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 107      9  8.335137 1.56288494  4.254072e-01 0.670539828
#> 108     17 16.337106 2.25988030  2.933317e-01 0.769268647
#> 109      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 110      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 111      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 112      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 113      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 114      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 115      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 116      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 117      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 118     14 14.336614 2.10735730 -1.597325e-01 0.873091777
#> 119      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 120      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 121      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 122      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 123      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 124     15 14.336614 2.10735730  3.147955e-01 0.752916966
#> 125      7  5.000984 1.15429461  1.731807e+00 0.083307861
#> 126      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 127      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 128     16 13.669783 2.05400069  1.134477e+00 0.256594389
#> 129      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 130      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 131      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 132      8  9.001968 1.63237562 -6.138098e-01 0.539341040
#> 133      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 134      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 135      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 136      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 137      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 138     25 20.338090 2.53756790  1.837157e+00 0.066186734
#> 139      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 140      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 141      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 142      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 143     14 13.669783 2.05400069  1.607678e-01 0.872276289
#> 144      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 145      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 146      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 147      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 148     13 12.336121 1.94289607  3.416953e-01 0.732580185
#> 149      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 150      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 151      8  9.001968 1.63237562 -6.138098e-01 0.539341040
#> 152      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 153      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 154      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 155     13 13.002952 1.99922042 -1.476654e-03 0.998821801
#> 156     10  9.668799 1.69902630  1.949359e-01 0.845443130
#> 157     13 13.669783 2.05400069 -3.260870e-01 0.744358567
#> 158      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 159      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 160      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 161     28 29.006888 3.05378310 -3.297184e-01 0.741612777
#> 162      8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 163      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 164      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 165      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 166      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 167      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 168      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 169      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 170      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 171     10  8.335137 1.56288494  1.065250e+00 0.286762989
#> 172      4  7.001476 1.41369228 -2.123147e+00 0.033741562
#> 173      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 174      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 175      2  4.334153 1.05373221 -2.215130e+00 0.026751172
#> 176      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 177     14 12.336121 1.94289607  8.563909e-01 0.391781595
#> 178      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 179     23 19.004428 2.44850757  1.631840e+00 0.102713268
#> 180      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 181      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 182     23 25.005904 2.82726846 -7.094849e-01 0.478023611
#> 183      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 184      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 185      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 186      7  7.668307 1.49015700 -4.484808e-01 0.653806265
#> 187     12 13.002952 1.99922042 -5.016716e-01 0.615898528
#> 188     19 21.671751 2.62360628 -1.018351e+00 0.308511387
#> 189      9  7.001476 1.41369228  1.413691e+00 0.157452675
#> 190      6  7.668307 1.49015700 -1.119551e+00 0.262905149
#> 191      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 192      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 193     15 15.670275 2.21020923 -3.032631e-01 0.761689381
#> 194      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 195      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 196     28 24.339074 2.78772681  1.313230e+00 0.189105471
#> 197     14 12.336121 1.94289607  8.563909e-01 0.391781595
#> 198      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 199      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 200      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 201      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 202      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 203      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 204      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 205     11  8.335137 1.56288494  1.705092e+00 0.088177272
#> 206      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 207      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 208      9  7.668307 1.49015700  8.936597e-01 0.371503999
#> 209      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 210      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 211     11  9.001968 1.63237562  1.224003e+00 0.220951271
#> 212      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 213      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 214     12  9.668799 1.69902630  1.372081e+00 0.170038313
#> 215      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 216      1  3.667323 0.94250012 -2.830050e+00 0.004654069
#> 217      7  5.000984 1.15429461  1.731807e+00 0.083307861
#> 218      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 219      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 220     22 21.671751 2.62360628  1.251137e-01 0.900433545
#> 221      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 222     14 13.669783 2.05400069  1.607678e-01 0.872276289
#> 223      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 224     24 18.337598 2.40273961  2.356644e+00 0.018440905
#> 225      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 226      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 227      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 228     26 23.672243 2.74761605  8.471915e-01 0.396888375
#> 229      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 230     22 24.339074 2.78772681 -8.390613e-01 0.401434920
#> 231      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 232      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 233      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 234      4  5.667815 1.24677180 -1.337706e+00 0.180992136
#> 235      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 236      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 237      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 238      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 239      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 240      1  3.000492 0.81624798 -2.450839e+00 0.014252386
#> 241      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 242      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 243      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 244     18 20.338090 2.53756790 -9.213900e-01 0.356846869
#> 245      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 246      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 247      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 248      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 249      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 250     10  9.001968 1.63237562  6.113984e-01 0.540935839
#> 251      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 252      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 253     12 12.336121 1.94289607 -1.730002e-01 0.862651241
#> 254      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 255     19 19.004428 2.44850757 -1.808544e-03 0.998556991
#> 256      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 257      7  8.335137 1.56288494 -8.542775e-01 0.392951254
#> 258      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 259      9  9.001968 1.63237562 -1.205669e-03 0.999038016
#> 260      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 261      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 262      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 263      7  5.000984 1.15429461  1.731807e+00 0.083307861
#> 264      3  7.001476 1.41369228 -2.830514e+00 0.004647325
#> 265      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 266      9  9.668799 1.69902630 -3.936365e-01 0.693849424
#> 267      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 268      8  8.335137 1.56288494 -2.144351e-01 0.830207752
#> 269      9  9.668799 1.69902630 -3.936365e-01 0.693849424
#> 270     16 14.336614 2.10735730  7.893234e-01 0.429922996
#> 271      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 272      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 273      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 274      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 275      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 276      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 277      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 278      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 279      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 280      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 281     21 28.340058 3.01721207 -2.432728e+00 0.014985534
#> 282      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 283      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 284      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 285      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 286     19 20.338090 2.53756790 -5.273118e-01 0.597977057
#> 287      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 288     11 11.002460 1.82503944 -1.347987e-03 0.998924462
#> 289      5  7.001476 1.41369228 -1.415779e+00 0.156840170
#> 290      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 291      6  7.668307 1.49015700 -1.119551e+00 0.262905149
#> 292      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 293      8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 294      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 295      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 296     20 19.671259 2.49343546  1.318426e-01 0.895108767
#> 297     12  9.668799 1.69902630  1.372081e+00 0.170038313
#> 298     29 28.340058 3.01721207  2.187259e-01 0.826863602
#> 299      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 300      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 301      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 302      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 303      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 304      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 305      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 306      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 307      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 308      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 309     19 20.338090 2.53756790 -5.273118e-01 0.597977057
#> 310      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 311      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 312      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 313     18 15.670275 2.21020923  1.054074e+00 0.291848820
#> 314     21 17.670767 2.35608263  1.413038e+00 0.157644698
#> 315      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 316      1  3.000492 0.81624798 -2.450839e+00 0.014252386
#> 317      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 318      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 319      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 320      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 321      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 322      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 323      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 324      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 325      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 326      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 327      7  5.000984 1.15429461  1.731807e+00 0.083307861
#> 328      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 329      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 330      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 331     14 13.002952 1.99922042  4.987183e-01 0.617977839
#> 332      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 333      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 334      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 335      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 336      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 337     26 27.673227 2.98019220 -5.614494e-01 0.574491241
#> 338      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 339      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 340      7  7.668307 1.49015700 -4.484808e-01 0.653806265
#> 341     19 22.338582 2.66558409 -1.252477e+00 0.210396262
#> 342      6  7.001476 1.41369228 -7.084116e-01 0.478689660
#> 343      4  5.667815 1.24677180 -1.337706e+00 0.180992136
#> 344     17 18.337598 2.40273961 -5.566968e-01 0.577734574
#> 345      5  6.334645 1.33284778 -1.001349e+00 0.316658251
#> 346      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 347      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 348      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 349     21 18.337598 2.40273961  1.108069e+00 0.267831809
#> 350      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 351      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 352     17 12.336121 1.94289607  2.400478e+00 0.016373692
#> 353      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 354     21 21.671751 2.62360628 -2.560411e-01 0.797919132
#> 355      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 356      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 357      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 358      6  7.001476 1.41369228 -7.084116e-01 0.478689660
#> 359      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 360      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 361      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 362      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 363      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 364     22 20.338090 2.53756790  6.549225e-01 0.512517627
#> 365      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 366      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 367      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 368      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 369      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 370      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 371     20 22.338582 2.66558409 -8.773243e-01 0.380310534
#> 372      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 373      9 10.335629 1.76315909 -7.575207e-01 0.448737987
#> 374     16 13.002952 1.99922042  1.499108e+00 0.133845550
#> 375      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 376      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 377      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 378     19 20.338090 2.53756790 -5.273118e-01 0.597977057
#> 379      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 380      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 381      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 382     13 12.336121 1.94289607  3.416953e-01 0.732580185
#> 383      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 384      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 385      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 386      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 387      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 388      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 389      6  7.001476 1.41369228 -7.084116e-01 0.478689660
#> 390      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 391      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 392      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 393      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 394      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 395      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 396      9  8.335137 1.56288494  4.254072e-01 0.670539828
#> 397      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 398      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 399      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 400      9  7.001476 1.41369228  1.413691e+00 0.157452675
#> 401      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 402      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 403      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 404      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 405      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 406      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 407      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 408      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 409      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 410      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 411     26 28.340058 3.01721207 -7.755695e-01 0.438003209
#> 412      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 413     13 12.336121 1.94289607  3.416953e-01 0.732580185
#> 414      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 415      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 416     20 19.671259 2.49343546  1.318426e-01 0.895108767
#> 417      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 418      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 419      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 420      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 421      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 422      9 11.669291 1.88488922 -1.416153e+00 0.156730824
#> 423      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 424      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 425      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 426      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 427     30 27.673227 2.98019220  7.807459e-01 0.434951931
#> 428      1  4.334153 1.05373221 -3.164137e+00 0.001555434
#> 429      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 430      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 431      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 432      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 433      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 434     10  8.335137 1.56288494  1.065250e+00 0.286762989
#> 435      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 436      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 437      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 438     11  9.001968 1.63237562  1.224003e+00 0.220951271
#> 439      4  6.334645 1.33284778 -1.751622e+00 0.079838838
#> 440      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 441      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 442      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 443     19 18.337598 2.40273961  2.756863e-01 0.782789004
#> 444      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 445      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 446      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 447      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 448      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 449      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 450      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 451      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 452     10 13.669783 2.05400069 -1.786651e+00 0.073993879
#> 453      6  7.001476 1.41369228 -7.084116e-01 0.478689660
#> 454      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 455      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 456     26 21.671751 2.62360628  1.649733e+00 0.098997620
#> 457      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 458     11 10.335629 1.76315909  3.768069e-01 0.706317098
#> 459      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 460      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 461      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 462      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 463      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 464      9 10.335629 1.76315909 -7.575207e-01 0.448737987
#> 465     27 23.005412 2.70691089  1.475700e+00 0.140024514
#> 466      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 467      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 468      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 469     10  9.668799 1.69902630  1.949359e-01 0.845443130
#> 470      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 471      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 472     10  9.001968 1.63237562  6.113984e-01 0.540935839
#> 473      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 474      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 475      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 476      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 477      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 478      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 479      6  8.335137 1.56288494 -1.494120e+00 0.135144294
#> 480      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 481      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 482      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 483      7  7.668307 1.49015700 -4.484808e-01 0.653806265
#> 484      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 485      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 486     12 11.002460 1.82503944  5.465854e-01 0.584663619
#> 487      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 488      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 489      7  5.000984 1.15429461  1.731807e+00 0.083307861
#> 490      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 491      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 492     30 29.673719 3.08992122  1.055952e-01 0.915903505
#> 493      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 494      7  8.335137 1.56288494 -8.542775e-01 0.392951254
#> 495      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 496      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 497      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 498      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 499      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 500      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 501     19 17.003936 2.30848272  8.646648e-01 0.387222785
#> 502      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 503      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 504      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 505      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 506      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 507      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 508      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 509      5  6.334645 1.33284778 -1.001349e+00 0.316658251
#> 510      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 511      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 512      8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 513      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 514      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 515      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 516      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 517     25 28.340058 3.01721207 -1.107001e+00 0.268293366
#> 518      8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 519      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 520      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 521      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 522      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 523      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 524      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 525      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 526      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 527      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 528      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 529      5  6.334645 1.33284778 -1.001349e+00 0.316658251
#> 530      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 531     19 20.338090 2.53756790 -5.273118e-01 0.597977057
#> 532     10  8.335137 1.56288494  1.065250e+00 0.286762989
#> 533      8  9.001968 1.63237562 -6.138098e-01 0.539341040
#> 534      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 535      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 536      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 537      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 538     19 21.671751 2.62360628 -1.018351e+00 0.308511387
#> 539      7  7.668307 1.49015700 -4.484808e-01 0.653806265
#> 540      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 541      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 542      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 543      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 544      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 545      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 546      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 547      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 548      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 549      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 550      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 551      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 552      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 553      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 554      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 555      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 556      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 557      5  6.334645 1.33284778 -1.001349e+00 0.316658251
#> 558      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 559      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 560     27 24.339074 2.78772681  9.545148e-01 0.339823146
#> 561      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 562      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 563      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 564     25 23.005412 2.70691089  7.368502e-01 0.461213477
#> 565     10  8.335137 1.56288494  1.065250e+00 0.286762989
#> 566      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 567      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 568     20 19.671259 2.49343546  1.318426e-01 0.895108767
#> 569      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 570      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 571      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 572      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 573     16 16.337106 2.25988030 -1.491696e-01 0.881419775
#> 574      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 575      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 576      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 577      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 578      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 579      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 580      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 581      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 582      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 583      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 584      9  7.668307 1.49015700  8.936597e-01 0.371503999
#> 585     17 16.337106 2.25988030  2.933317e-01 0.769268647
#> 586      8  9.001968 1.63237562 -6.138098e-01 0.539341040
#> 587      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 588      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 589      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 590      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 591      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 592      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 593      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 594      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 595      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 596      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 597      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 598     21 22.338582 2.66558409 -5.021720e-01 0.615546559
#> 599      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 600      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 601      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 602      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 603      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 604     20 19.671259 2.49343546  1.318426e-01 0.895108767
#> 605     18 20.338090 2.53756790 -9.213900e-01 0.356846869
#> 606      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 607      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 608      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 609      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 610      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 611      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 612      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 613      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 614      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 615      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 616      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 617      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 618      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 619      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 620      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 621      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 622      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 623     17 15.670275 2.21020923  6.016286e-01 0.547421370
#> 624      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 625      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 626      9  9.001968 1.63237562 -1.205669e-03 0.999038016
#> 627      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 628     17 19.004428 2.44850757 -8.186326e-01 0.412996035
#> 629      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 630      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 631      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 632      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 633     14 13.002952 1.99922042  4.987183e-01 0.617977839
#> 634      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 635      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 636     15 19.671259 2.49343546 -1.873423e+00 0.061010020
#> 637      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 638      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 639      7  7.001476 1.41369228 -1.044130e-03 0.999166905
#> 640     22 20.338090 2.53756790  6.549225e-01 0.512517627
#> 641      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 642      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 643      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 644      5  6.334645 1.33284778 -1.001349e+00 0.316658251
#> 645      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 646      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 647      8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 648      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 649      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 650     11  9.001968 1.63237562  1.224003e+00 0.220951271
#> 651     10 12.336121 1.94289607 -1.202391e+00 0.229211928
#> 652      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 653      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 654      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 655      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 656      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 657      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 658      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 659      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 660      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 661     27 23.005412 2.70691089  1.475700e+00 0.140024514
#> 662      6  9.001968 1.63237562 -1.839018e+00 0.065912542
#> 663      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 664      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 665      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 666      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 667      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 668      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 669      3  5.000984 1.15429461 -1.733512e+00 0.083004632
#> 670     10 11.002460 1.82503944 -5.492814e-01 0.582812384
#> 671      9  6.334645 1.33284778  1.999744e+00 0.045527894
#> 672      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 673      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 674      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 675      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 676      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 677      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 678     12 11.002460 1.82503944  5.465854e-01 0.584663619
#> 679      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 680      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 681      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 682      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 683      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 684      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 685      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 686      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 687      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 688      9  9.001968 1.63237562 -1.205669e-03 0.999038016
#> 689      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 690      6  8.335137 1.56288494 -1.494120e+00 0.135144294
#> 691      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 692      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 693      2  5.000984 1.15429461 -2.599842e+00 0.009326659
#> 694      4  5.667815 1.24677180 -1.337706e+00 0.180992136
#> 695      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 696     13 11.669291 1.88488922  7.059880e-01 0.480195591
#> 697      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 698      9  7.668307 1.49015700  8.936597e-01 0.371503999
#> 699      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 700      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 701      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 702     19 15.670275 2.21020923  1.506520e+00 0.131933652
#> 703      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 704      9  8.335137 1.56288494  4.254072e-01 0.670539828
#> 705      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 706      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 707     17 16.337106 2.25988030  2.933317e-01 0.769268647
#> 708      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 709      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 710     10  9.668799 1.69902630  1.949359e-01 0.845443130
#> 711      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 712      5  7.001476 1.41369228 -1.415779e+00 0.156840170
#> 713      1  3.000492 0.81624798 -2.450839e+00 0.014252386
#> 714      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 715      2  4.334153 1.05373221 -2.215130e+00 0.026751172
#> 716      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 717      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 718      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 719      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 720      8  9.001968 1.63237562 -6.138098e-01 0.539341040
#> 721      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 722      3  5.000984 1.15429461 -1.733512e+00 0.083004632
#> 723     13 13.669783 2.05400069 -3.260870e-01 0.744358567
#> 724      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 725     10  7.668307 1.49015700  1.564730e+00 0.117646250
#> 726      9  7.001476 1.41369228  1.413691e+00 0.157452675
#> 727      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 728      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 729      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 730      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 731      4  5.667815 1.24677180 -1.337706e+00 0.180992136
#> 732      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 733     15 17.670767 2.35608263 -1.133562e+00 0.256978117
#> 734      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 735      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 736      8  8.335137 1.56288494 -2.144351e-01 0.830207752
#> 737     22 21.004920 2.58094570  3.855485e-01 0.699831081
#> 738      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 739     10  7.668307 1.49015700  1.564730e+00 0.117646250
#> 740      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 741      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 742      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 743      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 744     16 14.336614 2.10735730  7.893234e-01 0.429922996
#> 745      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 746      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 747      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 748      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 749      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 750      4  6.334645 1.33284778 -1.751622e+00 0.079838838
#> 751     10 10.335629 1.76315909 -1.903569e-01 0.849029488
#> 752      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 753      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 754     25 21.671751 2.62360628  1.268578e+00 0.204591635
#> 755      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 756      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 757      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 758      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 759      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 760      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 761     10  9.668799 1.69902630  1.949359e-01 0.845443130
#> 762      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 763      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 764      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 765      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 766      4  4.334153 1.05373221 -3.171141e-01 0.751157001
#> 767      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 768      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 769      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 770      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 771      2  3.667323 0.94250012 -1.769042e+00 0.076886794
#> 772      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 773      7  7.668307 1.49015700 -4.484808e-01 0.653806265
#> 774     13 11.669291 1.88488922  7.059880e-01 0.480195591
#> 775     20 20.338090 2.53756790 -1.332337e-01 0.894008552
#> 776     27 29.006888 3.05378310 -6.571810e-01 0.511064513
#> 777      1  3.667323 0.94250012 -2.830050e+00 0.004654069
#> 778      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 779      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 780     18 12.336121 1.94289607  2.915173e+00 0.003554912
#> 781      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 782      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 783      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 784      4  5.667815 1.24677180 -1.337706e+00 0.180992136
#> 785      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 786     11 10.335629 1.76315909  3.768069e-01 0.706317098
#> 787      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 788      4  5.667815 1.24677180 -1.337706e+00 0.180992136
#> 789     10  9.668799 1.69902630  1.949359e-01 0.845443130
#> 790      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 791      6  6.334645 1.33284778 -2.510755e-01 0.801755749
#> 792      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 793      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 794      7  8.335137 1.56288494 -8.542775e-01 0.392951254
#> 795      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 796     11  9.668799 1.69902630  7.835083e-01 0.433328678
#> 797      8  7.668307 1.49015700  2.225895e-01 0.823855039
#> 798      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 799     19 18.337598 2.40273961  2.756863e-01 0.782789004
#> 800      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 801      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 802      5  5.667815 1.24677180 -5.356351e-01 0.592210772
#> 803      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 804      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 805      5  3.667323 0.94250012  1.413981e+00 0.157367469
#> 806      5  6.334645 1.33284778 -1.001349e+00 0.316658251
#> 807     11  7.668307 1.49015700  2.235800e+00 0.025364865
#> 808      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 809      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 810      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 811     13 13.669783 2.05400069 -3.260870e-01 0.744358567
#> 812      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 813     30 29.006888 3.05378310  3.252070e-01 0.745024412
#> 814      0  1.000000 0.01095397 -9.129110e+01 0.000000000
#> 815      6  9.001968 1.63237562 -1.839018e+00 0.065912542
#> 816      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 817      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 818      9  9.001968 1.63237562 -1.205669e-03 0.999038016
#> 819      1  1.666831 0.47134650 -1.414736e+00 0.157146034
#> 820      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 821      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 822      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 823      7  5.667815 1.24677180  1.068508e+00 0.285291559
#> 824      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 825      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 826      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 827     13 11.669291 1.88488922  7.059880e-01 0.480195591
#> 828      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 829      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 830      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 831      4  3.667323 0.94250012  3.529732e-01 0.724108520
#> 832      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 833      5  4.334153 1.05373221  6.318936e-01 0.527456416
#> 834      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 835     19 16.337106 2.25988030  1.178334e+00 0.238663359
#> 836      6  4.334153 1.05373221  1.580901e+00 0.113900606
#> 837      7  8.335137 1.56288494 -8.542775e-01 0.392951254
#> 838      8  6.334645 1.33284778  1.249471e+00 0.211492867
#> 839      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 840     27 29.673719 3.08992122 -8.653033e-01 0.386872338
#> 841      8  5.667815 1.24677180  1.870579e+00 0.061403444
#> 842      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 843      2  4.334153 1.05373221 -2.215130e+00 0.026751172
#> 844      6  5.000984 1.15429461  8.654774e-01 0.386776793
#> 845      6  5.667815 1.24677180  2.664363e-01 0.789903208
#> 846      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 847     18 16.337106 2.25988030  7.358330e-01 0.461832345
#> 848     10  7.668307 1.49015700  1.564730e+00 0.117646250
#> 849      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 850      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 851     21 20.338090 2.53756790  2.608444e-01 0.794212491
#> 852      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 853      1  3.000492 0.81624798 -2.450839e+00 0.014252386
#> 854      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 855      8  7.001476 1.41369228  7.063234e-01 0.479987051
#> 856      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 857      7  6.334645 1.33284778  4.991977e-01 0.617640087
#> 858     27 23.005412 2.70691089  1.475700e+00 0.140024514
#> 859      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 860      3  2.333661 0.66649415  9.997667e-01 0.317423430
#> 861      9  8.335137 1.56288494  4.254072e-01 0.670539828
#> 862      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 863      2  2.333661 0.66649415 -5.006216e-01 0.616637476
#> 864      2  1.666831 0.47134650  7.068459e-01 0.479662271
#> 865      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 866      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 867      1  2.333661 0.66649415 -2.001010e+00 0.045391330
#> 868      5  5.000984 1.15429461 -8.525138e-04 0.999319792
#> 869      2  3.000492 0.81624798 -1.225721e+00 0.220303808
#> 870      3  3.667323 0.94250012 -7.080346e-01 0.478923767
#> 871      4  5.000984 1.15429461 -8.671825e-01 0.385842041
#> 872      4  3.000492 0.81624798  1.224515e+00 0.220757976
#> 873      3  4.334153 1.05373221 -1.266122e+00 0.205469460
#> 874     23 21.004920 2.58094570  7.730034e-01 0.439520382
#> 875      5  7.001476 1.41369228 -1.415779e+00 0.156840170
#> 876      3  3.000492 0.81624798 -6.027899e-04 0.999519043
#> 877      7  7.668307 1.49015700 -4.484808e-01 0.653806265
plot(lsrq, sf = FastFood.sf)
#> Warning: bounding box has potentially an invalid value range for longlat data

# }