Skip to contents

This function calculates the local spatial runs tests for all localizations.

Usage

local.sp.runs.test(formula = NULL, data = NULL, fx = NULL,
distr = "asymptotic", listw = listw, alternative = "two.sided" , nsim = NULL,
control = list())

Arguments

formula

An (optional) formula with the factor included in data

data

An (optional) data frame or a sf object containing the variable to testing for.

fx

An (optional) factor of observations with the same length as the neighbors list in listw

distr

a character string specifying the distribution "asymptotic" (default) or "bootstrap"

listw

A neighbourhood list (an object type knn or nb) or a W matrix that indicates the order of the elements in each $m_i-environment$ (for example of inverse distance). To calculate the number of runs in each $m_i-environment$, an order must be established, for example from the nearest neighbour to the furthest one.

alternative

a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less".

nsim

Default value is NULL to obtain the asymptotic version of the local test. For the bootstrap version nsim is the number of permutations to obtain the pseudo-value.

control

Optional argument. See Control Argument section.

Value

The output is an object of the class localsrq

local.SRQ A matrix with

runs.inumber of runs in the localization 'i'.
E.iexpectation of local runs statistic in the localization 'i'.
Sd.istandard deviate of local runs statistic in the localization 'i'.
z.valuestandard value of local runs statistic (only for asymptotic version).
p.valuep-value of local local runs statistic (only for asymptotic version).
zseudo.valuestandard value of local runs statistic (only for boots version).
pseudo.valuep-value of local runs statistic (only for boots version).

MeanNeig Mean of run.i
MaxNeig Maximum of run.i
listw the object listw
alternative a character string describing the alternative hypothesis

Details

The object listw can be the class:

  • knn: Objects of the class knn that consider the neighbours in order of proximity.

  • nb: If the neighbours are obtained from an sf object, the code internally will call the function nb2nb_order it will order them in order of proximity of the centroids.

  • matrix: If a object of matrix class based in the inverse of the distance in introduced as argument, the function nb2nb_order will also be called internally to transform the object the class matrix to a matrix of the class nb with ordered neighbours.

Control arguments

seedinitNumerical value for the seed in boot version. Default value seedinit = 123

See also

Author

Fernando Lópezfernando.lopez@upct.es
Román Mínguezroman.minguez@uclm.es
Antonio Páezpaezha@gmail.com
Manuel Ruizmanuel.ruiz@upct.es

@references

  • Ruiz, M., López, F., and Páez, A. (2021). A test for global and local homogeneity of categorical data based on spatial runs. Working paper.

Examples


# Case 1: Local spatial runs test based on knn
N <- 100
cx <- runif(N)
cy <- runif(N)
x <- cbind(cx,cy)
listw <- spdep::knearneigh(cbind(cx,cy), k = 10)
p <- c(1/6,3/6,2/6)
rho <- 0.5
fx <- dgp.spq(p = p, listw = listw, rho = rho)

# Asymtotic version
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "less")
print(lsrq)
#>     runs.i      E.i   Std.i    z.value      p.value
#> 1        8 7.183838 1.59988  0.5101392 0.6950230217
#> 2        3 7.183838 1.59988 -2.6150947 0.0044601364
#> 3        7 7.183838 1.59988 -0.1149076 0.4542591853
#> 4        8 7.183838 1.59988  0.5101392 0.6950230217
#> 5        6 7.183838 1.59988 -0.7399544 0.2296638446
#> 6        5 7.183838 1.59988 -1.3650011 0.0861263477
#> 7        6 7.183838 1.59988 -0.7399544 0.2296638446
#> 8        9 7.183838 1.59988  1.1351860 0.8718512930
#> 9        8 7.183838 1.59988  0.5101392 0.6950230217
#> 10       8 7.183838 1.59988  0.5101392 0.6950230217
#> 11       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 12       2 7.183838 1.59988 -3.2401414 0.0005973521
#> 13       3 7.183838 1.59988 -2.6150947 0.0044601364
#> 14       9 7.183838 1.59988  1.1351860 0.8718512930
#> 15       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 16       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 17       8 7.183838 1.59988  0.5101392 0.6950230217
#> 18       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 19       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 20       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 21       8 7.183838 1.59988  0.5101392 0.6950230217
#> 22       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 23       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 24       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 25       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 26       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 27       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 28      11 7.183838 1.59988  2.3852795 0.9914669250
#> 29       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 30       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 31       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 32      11 7.183838 1.59988  2.3852795 0.9914669250
#> 33       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 34       8 7.183838 1.59988  0.5101392 0.6950230217
#> 35       8 7.183838 1.59988  0.5101392 0.6950230217
#> 36       9 7.183838 1.59988  1.1351860 0.8718512930
#> 37       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 38       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 39       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 40       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 41       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 42       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 43      10 7.183838 1.59988  1.7602327 0.9608158220
#> 44       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 45       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 46       8 7.183838 1.59988  0.5101392 0.6950230217
#> 47       8 7.183838 1.59988  0.5101392 0.6950230217
#> 48       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 49       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 50       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 51       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 52       8 7.183838 1.59988  0.5101392 0.6950230217
#> 53       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 54       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 55       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 56       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 57       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 58       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 59       8 7.183838 1.59988  0.5101392 0.6950230217
#> 60       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 61       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 62       2 7.183838 1.59988 -3.2401414 0.0005973521
#> 63       8 7.183838 1.59988  0.5101392 0.6950230217
#> 64       9 7.183838 1.59988  1.1351860 0.8718512930
#> 65       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 66       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 67       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 68       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 69       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 70       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 71       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 72       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 73       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 74       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 75      10 7.183838 1.59988  1.7602327 0.9608158220
#> 76       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 77       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 78       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 79       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 80       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 81       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 82       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 83       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 84      10 7.183838 1.59988  1.7602327 0.9608158220
#> 85       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 86       8 7.183838 1.59988  0.5101392 0.6950230217
#> 87       9 7.183838 1.59988  1.1351860 0.8718512930
#> 88       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 89       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 90       8 7.183838 1.59988  0.5101392 0.6950230217
#> 91       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 92       8 7.183838 1.59988  0.5101392 0.6950230217
#> 93       7 7.183838 1.59988 -0.1149076 0.4542591853
#> 94       8 7.183838 1.59988  0.5101392 0.6950230217
#> 95       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 96       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 97       4 7.183838 1.59988 -1.9900479 0.0232928297
#> 98       6 7.183838 1.59988 -0.7399544 0.2296638446
#> 99       5 7.183838 1.59988 -1.3650011 0.0861263477
#> 100      5 7.183838 1.59988 -1.3650011 0.0861263477
plot(lsrq, sig = 0.05)

# Asymtotic version
lsrq <- local.sp.runs.test(fx = fx, listw = listw, alternative = "two.sided",
                           distr ="bootstrap", nsim = 399)
print(lsrq)
#>     SRQ     EP.i    SdP.i zseudo.value pseudo.value
#> 1     8 7.155388 1.580635   0.53434952  0.593099735
#> 2     3 7.162907 1.598060  -2.60497517  0.009188092
#> 3     7 7.062657 1.544510  -0.04056732  0.967640835
#> 4     8 7.125313 1.588063   0.55078826  0.581778831
#> 5     6 7.092732 1.562411  -0.69938823  0.484309438
#> 6     5 7.218045 1.553105  -1.42813575  0.153252788
#> 7     6 7.090226 1.691504  -0.64453031  0.519231611
#> 8     9 7.310777 1.631554   1.03534599  0.300507360
#> 9     8 7.195489 1.472317   0.54642519  0.584773695
#> 10    8 7.095238 1.621449   0.55799580  0.576847253
#> 11    5 7.208020 1.581722  -1.39595946  0.162726702
#> 12    2 7.140351 1.589966  -3.23299488  0.001224998
#> 13    3 7.192982 1.613495  -2.59869486  0.009357892
#> 14    9 7.268170 1.530515   1.13153373  0.257830516
#> 15    7 7.305764 1.584073  -0.19302415  0.846940053
#> 16    6 7.187970 1.641869  -0.72354726  0.469343730
#> 17    8 7.137845 1.619152   0.53247326  0.594398254
#> 18    6 7.215539 1.570347  -0.77405758  0.438896742
#> 19    5 7.180451 1.521213  -1.43336338  0.151754018
#> 20    6 7.197995 1.537928  -0.77896696  0.435999179
#> 21    8 6.974937 1.588075   0.64547482  0.518619531
#> 22    5 7.172932 1.634327  -1.32955799  0.183663949
#> 23    5 7.055138 1.629492  -1.26121396  0.207231771
#> 24    5 7.157895 1.612648  -1.33810618  0.180861828
#> 25    7 7.285714 1.537985  -0.18577181  0.852623715
#> 26    6 7.278195 1.572471  -0.81285807  0.416299438
#> 27    4 7.087719 1.586635  -1.94608003  0.051645127
#> 28   11 7.248120 1.621492   2.31384406  0.020676278
#> 29    4 7.278195 1.604109  -2.04362354  0.040990752
#> 30    4 7.162907 1.601202  -1.97533347  0.048230317
#> 31    6 7.258145 1.497411  -0.84021396  0.400788432
#> 32   11 7.215539 1.611410   2.34854012  0.018847169
#> 33    5 7.360902 1.618075  -1.45908105  0.144542802
#> 34    8 7.055138 1.663068   0.56814390  0.569937258
#> 35    8 7.303258 1.658165   0.42018843  0.674347804
#> 36    9 7.220551 1.644690   1.08193587  0.279281024
#> 37    5 6.942356 1.706972  -1.13789542  0.255164156
#> 38    6 7.095238 1.548529  -0.70727645  0.479394699
#> 39    7 7.155388 1.601166  -0.09704705  0.922689027
#> 40    6 7.077694 1.542197  -0.69880467  0.484674108
#> 41    7 7.162907 1.587016  -0.10265003  0.918240735
#> 42    7 7.120301 1.540268  -0.07810377  0.937745508
#> 43   10 7.102757 1.580970   1.83257362  0.066866004
#> 44    7 7.283208 1.499579  -0.18885834  0.850203844
#> 45    6 7.218045 1.644261  -0.74078590  0.458823269
#> 46    8 7.265664 1.657812   0.44295483  0.657798408
#> 47    8 7.075188 1.516860   0.60968833  0.542068289
#> 48    5 7.177945 1.577453  -1.38067218  0.167379779
#> 49    7 7.228070 1.647478  -0.13843592  0.889895914
#> 50    4 7.215539 1.609850  -1.99741511  0.045780108
#> 51    5 7.240602 1.606287  -1.39489528  0.163047420
#> 52    8 7.255639 1.485207   0.50118311  0.616242259
#> 53    5 7.278195 1.647383  -1.38291809  0.166689981
#> 54    7 7.253133 1.521565  -0.16636348  0.867870912
#> 55    6 7.248120 1.691269  -0.73797841  0.460527570
#> 56    7 7.233083 1.554151  -0.14997430  0.880784889
#> 57    6 7.245614 1.575511  -0.79060941  0.429171952
#> 58    6 7.130326 1.666416  -0.67829750  0.497583086
#> 59    8 7.218045 1.605604   0.48701595  0.626247025
#> 60    7 7.205514 1.573291  -0.13062665  0.896070662
#> 61    4 7.177945 1.571068  -2.02279211  0.043094585
#> 62    2 7.152882 1.565708  -3.29108685  0.000998011
#> 63    8 7.182957 1.506805   0.54223498  0.587656642
#> 64    9 7.047619 1.679087   1.16276309  0.244925635
#> 65    4 7.270677 1.603049  -2.04028490  0.041321958
#> 66    7 7.185464 1.554921  -0.11927532  0.905057233
#> 67    6 7.263158 1.567067  -0.80606493  0.420205413
#> 68    6 7.265664 1.551332  -0.81585621  0.414582379
#> 69    6 7.127820 1.635413  -0.68962366  0.490430882
#> 70    5 7.340852 1.678750  -1.39440193  0.163196264
#> 71    6 7.208020 1.490113  -0.81069000  0.417543720
#> 72    5 7.253133 1.634608  -1.37839328  0.168081898
#> 73    6 7.200501 1.559506  -0.76979568  0.441421101
#> 74    5 7.273183 1.527983  -1.48770197  0.136829507
#> 75   10 7.215539 1.625383   1.71311124  0.086692076
#> 76    6 7.132832 1.523649  -0.74349921  0.457179497
#> 77    6 7.255639 1.572315  -0.79859284  0.424526543
#> 78    7 7.360902 1.573996  -0.22929049  0.818643141
#> 79    7 7.218045 1.613410  -0.13514554  0.892496806
#> 80    6 7.082707 1.545191  -0.70069452  0.483493675
#> 81    4 7.197995 1.499881  -2.13216524  0.032993265
#> 82    6 7.235589 1.608594  -0.76811739  0.442417449
#> 83    6 7.172932 1.565222  -0.74937140  0.453633383
#> 84   10 7.067669 1.554029   1.88692108  0.059170941
#> 85    7 7.110276 1.595493  -0.06911700  0.944896487
#> 86    8 7.225564 1.546352   0.50081492  0.616501386
#> 87    9 7.203008 1.551913   1.15792109  0.246896242
#> 88    5 7.130326 1.646698  -1.29369517  0.195770733
#> 89    4 7.137845 1.651418  -1.90009078  0.057421208
#> 90    8 7.025063 1.718762   0.56723218  0.570556445
#> 91    7 7.250627 1.558682  -0.16079386  0.872255758
#> 92    8 7.187970 1.601587   0.50701589  0.612143671
#> 93    7 7.110276 1.688825  -0.06529728  0.947937307
#> 94    8 7.057644 1.576902   0.59759969  0.550107071
#> 95    6 7.172932 1.652672  -0.70971863  0.477878639
#> 96    5 7.145363 1.552732  -1.38166997  0.167073059
#> 97    4 7.137845 1.680077  -1.86767874  0.061806864
#> 98    6 7.157895 1.544200  -0.74983458  0.453354337
#> 99    5 7.340852 1.617775  -1.44695770  0.147908771
#> 100   5 7.233083 1.595631  -1.39949815  0.161663653
plot(lsrq, sig = 0.1)

# \donttest{
# Case 2:Fastfood example. sf (points)
data("FastFood.sf")
# sf::sf_use_s2(FALSE)
x <- sf::st_coordinates(sf::st_centroid(FastFood.sf))
listw <- spdep::knearneigh(x, k = 10)
formula <- ~ Type
lsrq <- local.sp.runs.test(formula = formula, data = FastFood.sf, listw = listw)
print(lsrq)
#>     runs.i      E.i    Std.i    z.value    p.value
#> 1        8 7.668307 1.490157  0.2225895 0.82385504
#> 2        9 7.668307 1.490157  0.8936597 0.37150400
#> 3        9 7.668307 1.490157  0.8936597 0.37150400
#> 4        8 7.668307 1.490157  0.2225895 0.82385504
#> 5       10 7.668307 1.490157  1.5647299 0.11764625
#> 6        8 7.668307 1.490157  0.2225895 0.82385504
#> 7        8 7.668307 1.490157  0.2225895 0.82385504
#> 8        7 7.668307 1.490157 -0.4484808 0.65380626
#> 9        7 7.668307 1.490157 -0.4484808 0.65380626
#> 10       7 7.668307 1.490157 -0.4484808 0.65380626
#> 11       7 7.668307 1.490157 -0.4484808 0.65380626
#> 12       8 7.668307 1.490157  0.2225895 0.82385504
#> 13       9 7.668307 1.490157  0.8936597 0.37150400
#> 14       7 7.668307 1.490157 -0.4484808 0.65380626
#> 15      10 7.668307 1.490157  1.5647299 0.11764625
#> 16       9 7.668307 1.490157  0.8936597 0.37150400
#> 17       7 7.668307 1.490157 -0.4484808 0.65380626
#> 18       9 7.668307 1.490157  0.8936597 0.37150400
#> 19      10 7.668307 1.490157  1.5647299 0.11764625
#> 20       9 7.668307 1.490157  0.8936597 0.37150400
#> 21       9 7.668307 1.490157  0.8936597 0.37150400
#> 22      10 7.668307 1.490157  1.5647299 0.11764625
#> 23       7 7.668307 1.490157 -0.4484808 0.65380626
#> 24       6 7.668307 1.490157 -1.1195510 0.26290515
#> 25       9 7.668307 1.490157  0.8936597 0.37150400
#> 26       9 7.668307 1.490157  0.8936597 0.37150400
#> 27      10 7.668307 1.490157  1.5647299 0.11764625
#> 28       8 7.668307 1.490157  0.2225895 0.82385504
#> 29       8 7.668307 1.490157  0.2225895 0.82385504
#> 30      10 7.668307 1.490157  1.5647299 0.11764625
#> 31       9 7.668307 1.490157  0.8936597 0.37150400
#> 32       8 7.668307 1.490157  0.2225895 0.82385504
#> 33       6 7.668307 1.490157 -1.1195510 0.26290515
#> 34       8 7.668307 1.490157  0.2225895 0.82385504
#> 35       8 7.668307 1.490157  0.2225895 0.82385504
#> 36       9 7.668307 1.490157  0.8936597 0.37150400
#> 37       8 7.668307 1.490157  0.2225895 0.82385504
#> 38       7 7.668307 1.490157 -0.4484808 0.65380626
#> 39       8 7.668307 1.490157  0.2225895 0.82385504
#> 40       9 7.668307 1.490157  0.8936597 0.37150400
#> 41       8 7.668307 1.490157  0.2225895 0.82385504
#> 42       9 7.668307 1.490157  0.8936597 0.37150400
#> 43       7 7.668307 1.490157 -0.4484808 0.65380626
#> 44       8 7.668307 1.490157  0.2225895 0.82385504
#> 45       8 7.668307 1.490157  0.2225895 0.82385504
#> 46       8 7.668307 1.490157  0.2225895 0.82385504
#> 47       7 7.668307 1.490157 -0.4484808 0.65380626
#> 48       6 7.668307 1.490157 -1.1195510 0.26290515
#> 49       6 7.668307 1.490157 -1.1195510 0.26290515
#> 50       8 7.668307 1.490157  0.2225895 0.82385504
#> 51       6 7.668307 1.490157 -1.1195510 0.26290515
#> 52       7 7.668307 1.490157 -0.4484808 0.65380626
#> 53       4 7.668307 1.490157 -2.4616914 0.01382836
#> 54       7 7.668307 1.490157 -0.4484808 0.65380626
#> 55       8 7.668307 1.490157  0.2225895 0.82385504
#> 56       8 7.668307 1.490157  0.2225895 0.82385504
#> 57       4 7.668307 1.490157 -2.4616914 0.01382836
#> 58       5 7.668307 1.490157 -1.7906212 0.07335410
#> 59       9 7.668307 1.490157  0.8936597 0.37150400
#> 60      11 7.668307 1.490157  2.2358001 0.02536487
#> 61       4 7.668307 1.490157 -2.4616914 0.01382836
#> 62       7 7.668307 1.490157 -0.4484808 0.65380626
#> 63       6 7.668307 1.490157 -1.1195510 0.26290515
#> 64      10 7.668307 1.490157  1.5647299 0.11764625
#> 65       9 7.668307 1.490157  0.8936597 0.37150400
#> 66       7 7.668307 1.490157 -0.4484808 0.65380626
#> 67       7 7.668307 1.490157 -0.4484808 0.65380626
#> 68       6 7.668307 1.490157 -1.1195510 0.26290515
#> 69       8 7.668307 1.490157  0.2225895 0.82385504
#> 70      10 7.668307 1.490157  1.5647299 0.11764625
#> 71       8 7.668307 1.490157  0.2225895 0.82385504
#> 72       8 7.668307 1.490157  0.2225895 0.82385504
#> 73       6 7.668307 1.490157 -1.1195510 0.26290515
#> 74       8 7.668307 1.490157  0.2225895 0.82385504
#> 75       8 7.668307 1.490157  0.2225895 0.82385504
#> 76       8 7.668307 1.490157  0.2225895 0.82385504
#> 77      10 7.668307 1.490157  1.5647299 0.11764625
#> 78       8 7.668307 1.490157  0.2225895 0.82385504
#> 79       9 7.668307 1.490157  0.8936597 0.37150400
#> 80       8 7.668307 1.490157  0.2225895 0.82385504
#> 81       8 7.668307 1.490157  0.2225895 0.82385504
#> 82       8 7.668307 1.490157  0.2225895 0.82385504
#> 83       9 7.668307 1.490157  0.8936597 0.37150400
#> 84       8 7.668307 1.490157  0.2225895 0.82385504
#> 85       9 7.668307 1.490157  0.8936597 0.37150400
#> 86      10 7.668307 1.490157  1.5647299 0.11764625
#> 87       7 7.668307 1.490157 -0.4484808 0.65380626
#> 88       9 7.668307 1.490157  0.8936597 0.37150400
#> 89       7 7.668307 1.490157 -0.4484808 0.65380626
#> 90       7 7.668307 1.490157 -0.4484808 0.65380626
#> 91       8 7.668307 1.490157  0.2225895 0.82385504
#> 92      11 7.668307 1.490157  2.2358001 0.02536487
#> 93       7 7.668307 1.490157 -0.4484808 0.65380626
#> 94       6 7.668307 1.490157 -1.1195510 0.26290515
#> 95       9 7.668307 1.490157  0.8936597 0.37150400
#> 96       8 7.668307 1.490157  0.2225895 0.82385504
#> 97       8 7.668307 1.490157  0.2225895 0.82385504
#> 98       9 7.668307 1.490157  0.8936597 0.37150400
#> 99      10 7.668307 1.490157  1.5647299 0.11764625
#> 100     10 7.668307 1.490157  1.5647299 0.11764625
#> 101      9 7.668307 1.490157  0.8936597 0.37150400
#> 102      7 7.668307 1.490157 -0.4484808 0.65380626
#> 103     10 7.668307 1.490157  1.5647299 0.11764625
#> 104     10 7.668307 1.490157  1.5647299 0.11764625
#> 105      9 7.668307 1.490157  0.8936597 0.37150400
#> 106     10 7.668307 1.490157  1.5647299 0.11764625
#> 107      7 7.668307 1.490157 -0.4484808 0.65380626
#> 108      8 7.668307 1.490157  0.2225895 0.82385504
#> 109     10 7.668307 1.490157  1.5647299 0.11764625
#> 110      7 7.668307 1.490157 -0.4484808 0.65380626
#> 111     11 7.668307 1.490157  2.2358001 0.02536487
#> 112      7 7.668307 1.490157 -0.4484808 0.65380626
#> 113      9 7.668307 1.490157  0.8936597 0.37150400
#> 114     10 7.668307 1.490157  1.5647299 0.11764625
#> 115      5 7.668307 1.490157 -1.7906212 0.07335410
#> 116      7 7.668307 1.490157 -0.4484808 0.65380626
#> 117      8 7.668307 1.490157  0.2225895 0.82385504
#> 118      9 7.668307 1.490157  0.8936597 0.37150400
#> 119      7 7.668307 1.490157 -0.4484808 0.65380626
#> 120      9 7.668307 1.490157  0.8936597 0.37150400
#> 121      9 7.668307 1.490157  0.8936597 0.37150400
#> 122      3 7.668307 1.490157 -3.1327617 0.00173170
#> 123      7 7.668307 1.490157 -0.4484808 0.65380626
#> 124      9 7.668307 1.490157  0.8936597 0.37150400
#> 125      9 7.668307 1.490157  0.8936597 0.37150400
#> 126      7 7.668307 1.490157 -0.4484808 0.65380626
#> 127      7 7.668307 1.490157 -0.4484808 0.65380626
#> 128     10 7.668307 1.490157  1.5647299 0.11764625
#> 129      9 7.668307 1.490157  0.8936597 0.37150400
#> 130      8 7.668307 1.490157  0.2225895 0.82385504
#> 131      6 7.668307 1.490157 -1.1195510 0.26290515
#> 132      9 7.668307 1.490157  0.8936597 0.37150400
#> 133      8 7.668307 1.490157  0.2225895 0.82385504
#> 134      9 7.668307 1.490157  0.8936597 0.37150400
#> 135      8 7.668307 1.490157  0.2225895 0.82385504
#> 136      7 7.668307 1.490157 -0.4484808 0.65380626
#> 137      5 7.668307 1.490157 -1.7906212 0.07335410
#> 138      9 7.668307 1.490157  0.8936597 0.37150400
#> 139      8 7.668307 1.490157  0.2225895 0.82385504
#> 140      8 7.668307 1.490157  0.2225895 0.82385504
#> 141      7 7.668307 1.490157 -0.4484808 0.65380626
#> 142      7 7.668307 1.490157 -0.4484808 0.65380626
#> 143     10 7.668307 1.490157  1.5647299 0.11764625
#> 144      8 7.668307 1.490157  0.2225895 0.82385504
#> 145      9 7.668307 1.490157  0.8936597 0.37150400
#> 146      7 7.668307 1.490157 -0.4484808 0.65380626
#> 147      9 7.668307 1.490157  0.8936597 0.37150400
#> 148      9 7.668307 1.490157  0.8936597 0.37150400
#> 149      9 7.668307 1.490157  0.8936597 0.37150400
#> 150      8 7.668307 1.490157  0.2225895 0.82385504
#> 151      9 7.668307 1.490157  0.8936597 0.37150400
#> 152      7 7.668307 1.490157 -0.4484808 0.65380626
#> 153      7 7.668307 1.490157 -0.4484808 0.65380626
#> 154      9 7.668307 1.490157  0.8936597 0.37150400
#> 155      9 7.668307 1.490157  0.8936597 0.37150400
#> 156      9 7.668307 1.490157  0.8936597 0.37150400
#> 157     10 7.668307 1.490157  1.5647299 0.11764625
#> 158      8 7.668307 1.490157  0.2225895 0.82385504
#> 159      8 7.668307 1.490157  0.2225895 0.82385504
#> 160      8 7.668307 1.490157  0.2225895 0.82385504
#> 161      8 7.668307 1.490157  0.2225895 0.82385504
#> 162      9 7.668307 1.490157  0.8936597 0.37150400
#> 163      8 7.668307 1.490157  0.2225895 0.82385504
#> 164     10 7.668307 1.490157  1.5647299 0.11764625
#> 165      8 7.668307 1.490157  0.2225895 0.82385504
#> 166      8 7.668307 1.490157  0.2225895 0.82385504
#> 167     10 7.668307 1.490157  1.5647299 0.11764625
#> 168      8 7.668307 1.490157  0.2225895 0.82385504
#> 169      6 7.668307 1.490157 -1.1195510 0.26290515
#> 170      9 7.668307 1.490157  0.8936597 0.37150400
#> 171      9 7.668307 1.490157  0.8936597 0.37150400
#> 172      9 7.668307 1.490157  0.8936597 0.37150400
#> 173      7 7.668307 1.490157 -0.4484808 0.65380626
#> 174      9 7.668307 1.490157  0.8936597 0.37150400
#> 175      7 7.668307 1.490157 -0.4484808 0.65380626
#> 176     10 7.668307 1.490157  1.5647299 0.11764625
#> 177      9 7.668307 1.490157  0.8936597 0.37150400
#> 178      7 7.668307 1.490157 -0.4484808 0.65380626
#> 179      7 7.668307 1.490157 -0.4484808 0.65380626
#> 180     10 7.668307 1.490157  1.5647299 0.11764625
#> 181      8 7.668307 1.490157  0.2225895 0.82385504
#> 182     11 7.668307 1.490157  2.2358001 0.02536487
#> 183      8 7.668307 1.490157  0.2225895 0.82385504
#> 184      8 7.668307 1.490157  0.2225895 0.82385504
#> 185      9 7.668307 1.490157  0.8936597 0.37150400
#> 186      4 7.668307 1.490157 -2.4616914 0.01382836
#> 187      8 7.668307 1.490157  0.2225895 0.82385504
#> 188      7 7.668307 1.490157 -0.4484808 0.65380626
#> 189      9 7.668307 1.490157  0.8936597 0.37150400
#> 190      8 7.668307 1.490157  0.2225895 0.82385504
#> 191      9 7.668307 1.490157  0.8936597 0.37150400
#> 192      8 7.668307 1.490157  0.2225895 0.82385504
#> 193      7 7.668307 1.490157 -0.4484808 0.65380626
#> 194      9 7.668307 1.490157  0.8936597 0.37150400
#> 195     10 7.668307 1.490157  1.5647299 0.11764625
#> 196      8 7.668307 1.490157  0.2225895 0.82385504
#> 197      8 7.668307 1.490157  0.2225895 0.82385504
#> 198     10 7.668307 1.490157  1.5647299 0.11764625
#> 199      7 7.668307 1.490157 -0.4484808 0.65380626
#> 200     10 7.668307 1.490157  1.5647299 0.11764625
#> 201      7 7.668307 1.490157 -0.4484808 0.65380626
#> 202      8 7.668307 1.490157  0.2225895 0.82385504
#> 203      7 7.668307 1.490157 -0.4484808 0.65380626
#> 204      9 7.668307 1.490157  0.8936597 0.37150400
#> 205      7 7.668307 1.490157 -0.4484808 0.65380626
#> 206      8 7.668307 1.490157  0.2225895 0.82385504
#> 207      7 7.668307 1.490157 -0.4484808 0.65380626
#> 208      8 7.668307 1.490157  0.2225895 0.82385504
#> 209      6 7.668307 1.490157 -1.1195510 0.26290515
#> 210      8 7.668307 1.490157  0.2225895 0.82385504
#> 211      9 7.668307 1.490157  0.8936597 0.37150400
#> 212      8 7.668307 1.490157  0.2225895 0.82385504
#> 213     10 7.668307 1.490157  1.5647299 0.11764625
#> 214      7 7.668307 1.490157 -0.4484808 0.65380626
#> 215      8 7.668307 1.490157  0.2225895 0.82385504
#> 216      7 7.668307 1.490157 -0.4484808 0.65380626
#> 217      8 7.668307 1.490157  0.2225895 0.82385504
#> 218      9 7.668307 1.490157  0.8936597 0.37150400
#> 219      7 7.668307 1.490157 -0.4484808 0.65380626
#> 220      8 7.668307 1.490157  0.2225895 0.82385504
#> 221      6 7.668307 1.490157 -1.1195510 0.26290515
#> 222      9 7.668307 1.490157  0.8936597 0.37150400
#> 223      7 7.668307 1.490157 -0.4484808 0.65380626
#> 224      4 7.668307 1.490157 -2.4616914 0.01382836
#> 225     11 7.668307 1.490157  2.2358001 0.02536487
#> 226      6 7.668307 1.490157 -1.1195510 0.26290515
#> 227      9 7.668307 1.490157  0.8936597 0.37150400
#> 228      6 7.668307 1.490157 -1.1195510 0.26290515
#> 229      6 7.668307 1.490157 -1.1195510 0.26290515
#> 230      7 7.668307 1.490157 -0.4484808 0.65380626
#> 231      7 7.668307 1.490157 -0.4484808 0.65380626
#> 232      7 7.668307 1.490157 -0.4484808 0.65380626
#> 233      6 7.668307 1.490157 -1.1195510 0.26290515
#> 234      7 7.668307 1.490157 -0.4484808 0.65380626
#> 235      8 7.668307 1.490157  0.2225895 0.82385504
#> 236      9 7.668307 1.490157  0.8936597 0.37150400
#> 237      6 7.668307 1.490157 -1.1195510 0.26290515
#> 238     10 7.668307 1.490157  1.5647299 0.11764625
#> 239     10 7.668307 1.490157  1.5647299 0.11764625
#> 240     10 7.668307 1.490157  1.5647299 0.11764625
#> 241     11 7.668307 1.490157  2.2358001 0.02536487
#> 242     11 7.668307 1.490157  2.2358001 0.02536487
#> 243      6 7.668307 1.490157 -1.1195510 0.26290515
#> 244      8 7.668307 1.490157  0.2225895 0.82385504
#> 245      7 7.668307 1.490157 -0.4484808 0.65380626
#> 246      7 7.668307 1.490157 -0.4484808 0.65380626
#> 247      9 7.668307 1.490157  0.8936597 0.37150400
#> 248      9 7.668307 1.490157  0.8936597 0.37150400
#> 249      7 7.668307 1.490157 -0.4484808 0.65380626
#> 250      9 7.668307 1.490157  0.8936597 0.37150400
#> 251      9 7.668307 1.490157  0.8936597 0.37150400
#> 252      6 7.668307 1.490157 -1.1195510 0.26290515
#> 253      7 7.668307 1.490157 -0.4484808 0.65380626
#> 254     10 7.668307 1.490157  1.5647299 0.11764625
#> 255      5 7.668307 1.490157 -1.7906212 0.07335410
#> 256      5 7.668307 1.490157 -1.7906212 0.07335410
#> 257     10 7.668307 1.490157  1.5647299 0.11764625
#> 258      8 7.668307 1.490157  0.2225895 0.82385504
#> 259      9 7.668307 1.490157  0.8936597 0.37150400
#> 260      7 7.668307 1.490157 -0.4484808 0.65380626
#> 261     10 7.668307 1.490157  1.5647299 0.11764625
#> 262      6 7.668307 1.490157 -1.1195510 0.26290515
#> 263      8 7.668307 1.490157  0.2225895 0.82385504
#> 264      6 7.668307 1.490157 -1.1195510 0.26290515
#> 265      7 7.668307 1.490157 -0.4484808 0.65380626
#> 266      7 7.668307 1.490157 -0.4484808 0.65380626
#> 267      7 7.668307 1.490157 -0.4484808 0.65380626
#> 268      9 7.668307 1.490157  0.8936597 0.37150400
#> 269      6 7.668307 1.490157 -1.1195510 0.26290515
#> 270      7 7.668307 1.490157 -0.4484808 0.65380626
#> 271      7 7.668307 1.490157 -0.4484808 0.65380626
#> 272      8 7.668307 1.490157  0.2225895 0.82385504
#> 273      8 7.668307 1.490157  0.2225895 0.82385504
#> 274     10 7.668307 1.490157  1.5647299 0.11764625
#> 275      5 7.668307 1.490157 -1.7906212 0.07335410
#> 276      7 7.668307 1.490157 -0.4484808 0.65380626
#> 277     10 7.668307 1.490157  1.5647299 0.11764625
#> 278      7 7.668307 1.490157 -0.4484808 0.65380626
#> 279      8 7.668307 1.490157  0.2225895 0.82385504
#> 280      7 7.668307 1.490157 -0.4484808 0.65380626
#> 281      7 7.668307 1.490157 -0.4484808 0.65380626
#> 282      8 7.668307 1.490157  0.2225895 0.82385504
#> 283      8 7.668307 1.490157  0.2225895 0.82385504
#> 284      9 7.668307 1.490157  0.8936597 0.37150400
#> 285     10 7.668307 1.490157  1.5647299 0.11764625
#> 286      8 7.668307 1.490157  0.2225895 0.82385504
#> 287      8 7.668307 1.490157  0.2225895 0.82385504
#> 288      9 7.668307 1.490157  0.8936597 0.37150400
#> 289      9 7.668307 1.490157  0.8936597 0.37150400
#> 290     10 7.668307 1.490157  1.5647299 0.11764625
#> 291      9 7.668307 1.490157  0.8936597 0.37150400
#> 292      9 7.668307 1.490157  0.8936597 0.37150400
#> 293     10 7.668307 1.490157  1.5647299 0.11764625
#> 294      8 7.668307 1.490157  0.2225895 0.82385504
#> 295     10 7.668307 1.490157  1.5647299 0.11764625
#> 296      8 7.668307 1.490157  0.2225895 0.82385504
#> 297     10 7.668307 1.490157  1.5647299 0.11764625
#> 298      8 7.668307 1.490157  0.2225895 0.82385504
#> 299      9 7.668307 1.490157  0.8936597 0.37150400
#> 300      9 7.668307 1.490157  0.8936597 0.37150400
#> 301      9 7.668307 1.490157  0.8936597 0.37150400
#> 302      7 7.668307 1.490157 -0.4484808 0.65380626
#> 303      7 7.668307 1.490157 -0.4484808 0.65380626
#> 304      9 7.668307 1.490157  0.8936597 0.37150400
#> 305      8 7.668307 1.490157  0.2225895 0.82385504
#> 306     10 7.668307 1.490157  1.5647299 0.11764625
#> 307      9 7.668307 1.490157  0.8936597 0.37150400
#> 308      6 7.668307 1.490157 -1.1195510 0.26290515
#> 309      8 7.668307 1.490157  0.2225895 0.82385504
#> 310      7 7.668307 1.490157 -0.4484808 0.65380626
#> 311      8 7.668307 1.490157  0.2225895 0.82385504
#> 312      8 7.668307 1.490157  0.2225895 0.82385504
#> 313      9 7.668307 1.490157  0.8936597 0.37150400
#> 314      4 7.668307 1.490157 -2.4616914 0.01382836
#> 315      6 7.668307 1.490157 -1.1195510 0.26290515
#> 316      7 7.668307 1.490157 -0.4484808 0.65380626
#> 317      8 7.668307 1.490157  0.2225895 0.82385504
#> 318      9 7.668307 1.490157  0.8936597 0.37150400
#> 319      8 7.668307 1.490157  0.2225895 0.82385504
#> 320      9 7.668307 1.490157  0.8936597 0.37150400
#> 321      7 7.668307 1.490157 -0.4484808 0.65380626
#> 322      9 7.668307 1.490157  0.8936597 0.37150400
#> 323      9 7.668307 1.490157  0.8936597 0.37150400
#> 324      9 7.668307 1.490157  0.8936597 0.37150400
#> 325      9 7.668307 1.490157  0.8936597 0.37150400
#> 326      5 7.668307 1.490157 -1.7906212 0.07335410
#> 327      6 7.668307 1.490157 -1.1195510 0.26290515
#> 328      8 7.668307 1.490157  0.2225895 0.82385504
#> 329      9 7.668307 1.490157  0.8936597 0.37150400
#> 330     10 7.668307 1.490157  1.5647299 0.11764625
#> 331      8 7.668307 1.490157  0.2225895 0.82385504
#> 332      8 7.668307 1.490157  0.2225895 0.82385504
#> 333      9 7.668307 1.490157  0.8936597 0.37150400
#> 334      8 7.668307 1.490157  0.2225895 0.82385504
#> 335      7 7.668307 1.490157 -0.4484808 0.65380626
#> 336      5 7.668307 1.490157 -1.7906212 0.07335410
#> 337      6 7.668307 1.490157 -1.1195510 0.26290515
#> 338      9 7.668307 1.490157  0.8936597 0.37150400
#> 339      8 7.668307 1.490157  0.2225895 0.82385504
#> 340      6 7.668307 1.490157 -1.1195510 0.26290515
#> 341      6 7.668307 1.490157 -1.1195510 0.26290515
#> 342     11 7.668307 1.490157  2.2358001 0.02536487
#> 343      9 7.668307 1.490157  0.8936597 0.37150400
#> 344     11 7.668307 1.490157  2.2358001 0.02536487
#> 345      9 7.668307 1.490157  0.8936597 0.37150400
#> 346      8 7.668307 1.490157  0.2225895 0.82385504
#> 347      9 7.668307 1.490157  0.8936597 0.37150400
#> 348      8 7.668307 1.490157  0.2225895 0.82385504
#> 349     11 7.668307 1.490157  2.2358001 0.02536487
#> 350      9 7.668307 1.490157  0.8936597 0.37150400
#> 351      9 7.668307 1.490157  0.8936597 0.37150400
#> 352      9 7.668307 1.490157  0.8936597 0.37150400
#> 353      7 7.668307 1.490157 -0.4484808 0.65380626
#> 354      9 7.668307 1.490157  0.8936597 0.37150400
#> 355      8 7.668307 1.490157  0.2225895 0.82385504
#> 356     11 7.668307 1.490157  2.2358001 0.02536487
#> 357      8 7.668307 1.490157  0.2225895 0.82385504
#> 358      9 7.668307 1.490157  0.8936597 0.37150400
#> 359      9 7.668307 1.490157  0.8936597 0.37150400
#> 360      9 7.668307 1.490157  0.8936597 0.37150400
#> 361      9 7.668307 1.490157  0.8936597 0.37150400
#> 362      8 7.668307 1.490157  0.2225895 0.82385504
#> 363      9 7.668307 1.490157  0.8936597 0.37150400
#> 364      6 7.668307 1.490157 -1.1195510 0.26290515
#> 365     10 7.668307 1.490157  1.5647299 0.11764625
#> 366      8 7.668307 1.490157  0.2225895 0.82385504
#> 367     10 7.668307 1.490157  1.5647299 0.11764625
#> 368     10 7.668307 1.490157  1.5647299 0.11764625
#> 369      7 7.668307 1.490157 -0.4484808 0.65380626
#> 370      8 7.668307 1.490157  0.2225895 0.82385504
#> 371      8 7.668307 1.490157  0.2225895 0.82385504
#> 372      9 7.668307 1.490157  0.8936597 0.37150400
#> 373      9 7.668307 1.490157  0.8936597 0.37150400
#> 374     10 7.668307 1.490157  1.5647299 0.11764625
#> 375      9 7.668307 1.490157  0.8936597 0.37150400
#> 376      8 7.668307 1.490157  0.2225895 0.82385504
#> 377     10 7.668307 1.490157  1.5647299 0.11764625
#> 378      8 7.668307 1.490157  0.2225895 0.82385504
#> 379      8 7.668307 1.490157  0.2225895 0.82385504
#> 380      8 7.668307 1.490157  0.2225895 0.82385504
#> 381      7 7.668307 1.490157 -0.4484808 0.65380626
#> 382      6 7.668307 1.490157 -1.1195510 0.26290515
#> 383      8 7.668307 1.490157  0.2225895 0.82385504
#> 384     10 7.668307 1.490157  1.5647299 0.11764625
#> 385      7 7.668307 1.490157 -0.4484808 0.65380626
#> 386      9 7.668307 1.490157  0.8936597 0.37150400
#> 387      8 7.668307 1.490157  0.2225895 0.82385504
#> 388      9 7.668307 1.490157  0.8936597 0.37150400
#> 389      8 7.668307 1.490157  0.2225895 0.82385504
#> 390      7 7.668307 1.490157 -0.4484808 0.65380626
#> 391      4 7.668307 1.490157 -2.4616914 0.01382836
#> 392     10 7.668307 1.490157  1.5647299 0.11764625
#> 393      6 7.668307 1.490157 -1.1195510 0.26290515
#> 394      8 7.668307 1.490157  0.2225895 0.82385504
#> 395      8 7.668307 1.490157  0.2225895 0.82385504
#> 396      7 7.668307 1.490157 -0.4484808 0.65380626
#> 397      8 7.668307 1.490157  0.2225895 0.82385504
#> 398      8 7.668307 1.490157  0.2225895 0.82385504
#> 399      9 7.668307 1.490157  0.8936597 0.37150400
#> 400      9 7.668307 1.490157  0.8936597 0.37150400
#> 401      9 7.668307 1.490157  0.8936597 0.37150400
#> 402      9 7.668307 1.490157  0.8936597 0.37150400
#> 403      9 7.668307 1.490157  0.8936597 0.37150400
#> 404      8 7.668307 1.490157  0.2225895 0.82385504
#> 405      5 7.668307 1.490157 -1.7906212 0.07335410
#> 406      7 7.668307 1.490157 -0.4484808 0.65380626
#> 407      8 7.668307 1.490157  0.2225895 0.82385504
#> 408      8 7.668307 1.490157  0.2225895 0.82385504
#> 409      8 7.668307 1.490157  0.2225895 0.82385504
#> 410      8 7.668307 1.490157  0.2225895 0.82385504
#> 411      8 7.668307 1.490157  0.2225895 0.82385504
#> 412      7 7.668307 1.490157 -0.4484808 0.65380626
#> 413      8 7.668307 1.490157  0.2225895 0.82385504
#> 414     10 7.668307 1.490157  1.5647299 0.11764625
#> 415      8 7.668307 1.490157  0.2225895 0.82385504
#> 416      9 7.668307 1.490157  0.8936597 0.37150400
#> 417      9 7.668307 1.490157  0.8936597 0.37150400
#> 418      8 7.668307 1.490157  0.2225895 0.82385504
#> 419      9 7.668307 1.490157  0.8936597 0.37150400
#> 420      8 7.668307 1.490157  0.2225895 0.82385504
#> 421     11 7.668307 1.490157  2.2358001 0.02536487
#> 422      7 7.668307 1.490157 -0.4484808 0.65380626
#> 423      6 7.668307 1.490157 -1.1195510 0.26290515
#> 424      8 7.668307 1.490157  0.2225895 0.82385504
#> 425      9 7.668307 1.490157  0.8936597 0.37150400
#> 426      5 7.668307 1.490157 -1.7906212 0.07335410
#> 427      9 7.668307 1.490157  0.8936597 0.37150400
#> 428      9 7.668307 1.490157  0.8936597 0.37150400
#> 429     11 7.668307 1.490157  2.2358001 0.02536487
#> 430      8 7.668307 1.490157  0.2225895 0.82385504
#> 431      7 7.668307 1.490157 -0.4484808 0.65380626
#> 432      7 7.668307 1.490157 -0.4484808 0.65380626
#> 433      7 7.668307 1.490157 -0.4484808 0.65380626
#> 434      9 7.668307 1.490157  0.8936597 0.37150400
#> 435      9 7.668307 1.490157  0.8936597 0.37150400
#> 436      8 7.668307 1.490157  0.2225895 0.82385504
#> 437     10 7.668307 1.490157  1.5647299 0.11764625
#> 438      9 7.668307 1.490157  0.8936597 0.37150400
#> 439     10 7.668307 1.490157  1.5647299 0.11764625
#> 440      8 7.668307 1.490157  0.2225895 0.82385504
#> 441     10 7.668307 1.490157  1.5647299 0.11764625
#> 442      9 7.668307 1.490157  0.8936597 0.37150400
#> 443      7 7.668307 1.490157 -0.4484808 0.65380626
#> 444      8 7.668307 1.490157  0.2225895 0.82385504
#> 445     10 7.668307 1.490157  1.5647299 0.11764625
#> 446      8 7.668307 1.490157  0.2225895 0.82385504
#> 447      5 7.668307 1.490157 -1.7906212 0.07335410
#> 448      6 7.668307 1.490157 -1.1195510 0.26290515
#> 449      8 7.668307 1.490157  0.2225895 0.82385504
#> 450      8 7.668307 1.490157  0.2225895 0.82385504
#> 451      8 7.668307 1.490157  0.2225895 0.82385504
#> 452      8 7.668307 1.490157  0.2225895 0.82385504
#> 453      9 7.668307 1.490157  0.8936597 0.37150400
#> 454     10 7.668307 1.490157  1.5647299 0.11764625
#> 455     10 7.668307 1.490157  1.5647299 0.11764625
#> 456      8 7.668307 1.490157  0.2225895 0.82385504
#> 457      7 7.668307 1.490157 -0.4484808 0.65380626
#> 458      7 7.668307 1.490157 -0.4484808 0.65380626
#> 459      9 7.668307 1.490157  0.8936597 0.37150400
#> 460      9 7.668307 1.490157  0.8936597 0.37150400
#> 461      6 7.668307 1.490157 -1.1195510 0.26290515
#> 462      5 7.668307 1.490157 -1.7906212 0.07335410
#> 463     10 7.668307 1.490157  1.5647299 0.11764625
#> 464      8 7.668307 1.490157  0.2225895 0.82385504
#> 465      8 7.668307 1.490157  0.2225895 0.82385504
#> 466      7 7.668307 1.490157 -0.4484808 0.65380626
#> 467      6 7.668307 1.490157 -1.1195510 0.26290515
#> 468      9 7.668307 1.490157  0.8936597 0.37150400
#> 469      8 7.668307 1.490157  0.2225895 0.82385504
#> 470      8 7.668307 1.490157  0.2225895 0.82385504
#> 471      8 7.668307 1.490157  0.2225895 0.82385504
#> 472      7 7.668307 1.490157 -0.4484808 0.65380626
#> 473     10 7.668307 1.490157  1.5647299 0.11764625
#> 474      8 7.668307 1.490157  0.2225895 0.82385504
#> 475      9 7.668307 1.490157  0.8936597 0.37150400
#> 476     10 7.668307 1.490157  1.5647299 0.11764625
#> 477      7 7.668307 1.490157 -0.4484808 0.65380626
#> 478      4 7.668307 1.490157 -2.4616914 0.01382836
#> 479      6 7.668307 1.490157 -1.1195510 0.26290515
#> 480      8 7.668307 1.490157  0.2225895 0.82385504
#> 481      8 7.668307 1.490157  0.2225895 0.82385504
#> 482      8 7.668307 1.490157  0.2225895 0.82385504
#> 483      7 7.668307 1.490157 -0.4484808 0.65380626
#> 484      7 7.668307 1.490157 -0.4484808 0.65380626
#> 485      6 7.668307 1.490157 -1.1195510 0.26290515
#> 486      8 7.668307 1.490157  0.2225895 0.82385504
#> 487      9 7.668307 1.490157  0.8936597 0.37150400
#> 488      8 7.668307 1.490157  0.2225895 0.82385504
#> 489     10 7.668307 1.490157  1.5647299 0.11764625
#> 490     10 7.668307 1.490157  1.5647299 0.11764625
#> 491      8 7.668307 1.490157  0.2225895 0.82385504
#> 492      6 7.668307 1.490157 -1.1195510 0.26290515
#> 493      9 7.668307 1.490157  0.8936597 0.37150400
#> 494      6 7.668307 1.490157 -1.1195510 0.26290515
#> 495      7 7.668307 1.490157 -0.4484808 0.65380626
#> 496      9 7.668307 1.490157  0.8936597 0.37150400
#> 497      8 7.668307 1.490157  0.2225895 0.82385504
#> 498      6 7.668307 1.490157 -1.1195510 0.26290515
#> 499      7 7.668307 1.490157 -0.4484808 0.65380626
#> 500      8 7.668307 1.490157  0.2225895 0.82385504
#> 501      9 7.668307 1.490157  0.8936597 0.37150400
#> 502     10 7.668307 1.490157  1.5647299 0.11764625
#> 503      7 7.668307 1.490157 -0.4484808 0.65380626
#> 504      5 7.668307 1.490157 -1.7906212 0.07335410
#> 505      9 7.668307 1.490157  0.8936597 0.37150400
#> 506      7 7.668307 1.490157 -0.4484808 0.65380626
#> 507      6 7.668307 1.490157 -1.1195510 0.26290515
#> 508     10 7.668307 1.490157  1.5647299 0.11764625
#> 509      8 7.668307 1.490157  0.2225895 0.82385504
#> 510      7 7.668307 1.490157 -0.4484808 0.65380626
#> 511      8 7.668307 1.490157  0.2225895 0.82385504
#> 512     10 7.668307 1.490157  1.5647299 0.11764625
#> 513      9 7.668307 1.490157  0.8936597 0.37150400
#> 514      9 7.668307 1.490157  0.8936597 0.37150400
#> 515     10 7.668307 1.490157  1.5647299 0.11764625
#> 516     11 7.668307 1.490157  2.2358001 0.02536487
#> 517      7 7.668307 1.490157 -0.4484808 0.65380626
#> 518      7 7.668307 1.490157 -0.4484808 0.65380626
#> 519      9 7.668307 1.490157  0.8936597 0.37150400
#> 520      9 7.668307 1.490157  0.8936597 0.37150400
#> 521      7 7.668307 1.490157 -0.4484808 0.65380626
#> 522      6 7.668307 1.490157 -1.1195510 0.26290515
#> 523     10 7.668307 1.490157  1.5647299 0.11764625
#> 524      8 7.668307 1.490157  0.2225895 0.82385504
#> 525     10 7.668307 1.490157  1.5647299 0.11764625
#> 526      7 7.668307 1.490157 -0.4484808 0.65380626
#> 527      6 7.668307 1.490157 -1.1195510 0.26290515
#> 528      7 7.668307 1.490157 -0.4484808 0.65380626
#> 529      9 7.668307 1.490157  0.8936597 0.37150400
#> 530      6 7.668307 1.490157 -1.1195510 0.26290515
#> 531      9 7.668307 1.490157  0.8936597 0.37150400
#> 532     10 7.668307 1.490157  1.5647299 0.11764625
#> 533     10 7.668307 1.490157  1.5647299 0.11764625
#> 534      8 7.668307 1.490157  0.2225895 0.82385504
#> 535     10 7.668307 1.490157  1.5647299 0.11764625
#> 536      8 7.668307 1.490157  0.2225895 0.82385504
#> 537      9 7.668307 1.490157  0.8936597 0.37150400
#> 538      8 7.668307 1.490157  0.2225895 0.82385504
#> 539      8 7.668307 1.490157  0.2225895 0.82385504
#> 540      8 7.668307 1.490157  0.2225895 0.82385504
#> 541      9 7.668307 1.490157  0.8936597 0.37150400
#> 542      9 7.668307 1.490157  0.8936597 0.37150400
#> 543      8 7.668307 1.490157  0.2225895 0.82385504
#> 544      8 7.668307 1.490157  0.2225895 0.82385504
#> 545      8 7.668307 1.490157  0.2225895 0.82385504
#> 546      9 7.668307 1.490157  0.8936597 0.37150400
#> 547      9 7.668307 1.490157  0.8936597 0.37150400
#> 548      8 7.668307 1.490157  0.2225895 0.82385504
#> 549      7 7.668307 1.490157 -0.4484808 0.65380626
#> 550     10 7.668307 1.490157  1.5647299 0.11764625
#> 551     10 7.668307 1.490157  1.5647299 0.11764625
#> 552      9 7.668307 1.490157  0.8936597 0.37150400
#> 553     10 7.668307 1.490157  1.5647299 0.11764625
#> 554      9 7.668307 1.490157  0.8936597 0.37150400
#> 555      8 7.668307 1.490157  0.2225895 0.82385504
#> 556      8 7.668307 1.490157  0.2225895 0.82385504
#> 557     10 7.668307 1.490157  1.5647299 0.11764625
#> 558      7 7.668307 1.490157 -0.4484808 0.65380626
#> 559      9 7.668307 1.490157  0.8936597 0.37150400
#> 560      8 7.668307 1.490157  0.2225895 0.82385504
#> 561      9 7.668307 1.490157  0.8936597 0.37150400
#> 562      9 7.668307 1.490157  0.8936597 0.37150400
#> 563      8 7.668307 1.490157  0.2225895 0.82385504
#> 564      9 7.668307 1.490157  0.8936597 0.37150400
#> 565      6 7.668307 1.490157 -1.1195510 0.26290515
#> 566     10 7.668307 1.490157  1.5647299 0.11764625
#> 567     10 7.668307 1.490157  1.5647299 0.11764625
#> 568     10 7.668307 1.490157  1.5647299 0.11764625
#> 569     10 7.668307 1.490157  1.5647299 0.11764625
#> 570      8 7.668307 1.490157  0.2225895 0.82385504
#> 571      9 7.668307 1.490157  0.8936597 0.37150400
#> 572      6 7.668307 1.490157 -1.1195510 0.26290515
#> 573      9 7.668307 1.490157  0.8936597 0.37150400
#> 574      9 7.668307 1.490157  0.8936597 0.37150400
#> 575      9 7.668307 1.490157  0.8936597 0.37150400
#> 576      8 7.668307 1.490157  0.2225895 0.82385504
#> 577     10 7.668307 1.490157  1.5647299 0.11764625
#> 578      7 7.668307 1.490157 -0.4484808 0.65380626
#> 579      8 7.668307 1.490157  0.2225895 0.82385504
#> 580      7 7.668307 1.490157 -0.4484808 0.65380626
#> 581      8 7.668307 1.490157  0.2225895 0.82385504
#> 582     10 7.668307 1.490157  1.5647299 0.11764625
#> 583      7 7.668307 1.490157 -0.4484808 0.65380626
#> 584      9 7.668307 1.490157  0.8936597 0.37150400
#> 585      7 7.668307 1.490157 -0.4484808 0.65380626
#> 586      5 7.668307 1.490157 -1.7906212 0.07335410
#> 587      6 7.668307 1.490157 -1.1195510 0.26290515
#> 588      6 7.668307 1.490157 -1.1195510 0.26290515
#> 589      7 7.668307 1.490157 -0.4484808 0.65380626
#> 590     10 7.668307 1.490157  1.5647299 0.11764625
#> 591      7 7.668307 1.490157 -0.4484808 0.65380626
#> 592      8 7.668307 1.490157  0.2225895 0.82385504
#> 593      9 7.668307 1.490157  0.8936597 0.37150400
#> 594      9 7.668307 1.490157  0.8936597 0.37150400
#> 595     10 7.668307 1.490157  1.5647299 0.11764625
#> 596      9 7.668307 1.490157  0.8936597 0.37150400
#> 597      5 7.668307 1.490157 -1.7906212 0.07335410
#> 598      9 7.668307 1.490157  0.8936597 0.37150400
#> 599     10 7.668307 1.490157  1.5647299 0.11764625
#> 600      6 7.668307 1.490157 -1.1195510 0.26290515
#> 601      5 7.668307 1.490157 -1.7906212 0.07335410
#> 602      8 7.668307 1.490157  0.2225895 0.82385504
#> 603      9 7.668307 1.490157  0.8936597 0.37150400
#> 604     10 7.668307 1.490157  1.5647299 0.11764625
#> 605      8 7.668307 1.490157  0.2225895 0.82385504
#> 606      8 7.668307 1.490157  0.2225895 0.82385504
#> 607      4 7.668307 1.490157 -2.4616914 0.01382836
#> 608      9 7.668307 1.490157  0.8936597 0.37150400
#> 609      8 7.668307 1.490157  0.2225895 0.82385504
#> 610      9 7.668307 1.490157  0.8936597 0.37150400
#> 611     10 7.668307 1.490157  1.5647299 0.11764625
#> 612      7 7.668307 1.490157 -0.4484808 0.65380626
#> 613      8 7.668307 1.490157  0.2225895 0.82385504
#> 614      9 7.668307 1.490157  0.8936597 0.37150400
#> 615      7 7.668307 1.490157 -0.4484808 0.65380626
#> 616      6 7.668307 1.490157 -1.1195510 0.26290515
#> 617      4 7.668307 1.490157 -2.4616914 0.01382836
#> 618      6 7.668307 1.490157 -1.1195510 0.26290515
#> 619      6 7.668307 1.490157 -1.1195510 0.26290515
#> 620      8 7.668307 1.490157  0.2225895 0.82385504
#> 621      8 7.668307 1.490157  0.2225895 0.82385504
#> 622      7 7.668307 1.490157 -0.4484808 0.65380626
#> 623      5 7.668307 1.490157 -1.7906212 0.07335410
#> 624      6 7.668307 1.490157 -1.1195510 0.26290515
#> 625      9 7.668307 1.490157  0.8936597 0.37150400
#> 626      8 7.668307 1.490157  0.2225895 0.82385504
#> 627      7 7.668307 1.490157 -0.4484808 0.65380626
#> 628      9 7.668307 1.490157  0.8936597 0.37150400
#> 629      9 7.668307 1.490157  0.8936597 0.37150400
#> 630      7 7.668307 1.490157 -0.4484808 0.65380626
#> 631      8 7.668307 1.490157  0.2225895 0.82385504
#> 632      8 7.668307 1.490157  0.2225895 0.82385504
#> 633      9 7.668307 1.490157  0.8936597 0.37150400
#> 634      8 7.668307 1.490157  0.2225895 0.82385504
#> 635      8 7.668307 1.490157  0.2225895 0.82385504
#> 636      8 7.668307 1.490157  0.2225895 0.82385504
#> 637     10 7.668307 1.490157  1.5647299 0.11764625
#> 638      9 7.668307 1.490157  0.8936597 0.37150400
#> 639      7 7.668307 1.490157 -0.4484808 0.65380626
#> 640      9 7.668307 1.490157  0.8936597 0.37150400
#> 641      7 7.668307 1.490157 -0.4484808 0.65380626
#> 642     11 7.668307 1.490157  2.2358001 0.02536487
#> 643      8 7.668307 1.490157  0.2225895 0.82385504
#> 644      9 7.668307 1.490157  0.8936597 0.37150400
#> 645      7 7.668307 1.490157 -0.4484808 0.65380626
#> 646     10 7.668307 1.490157  1.5647299 0.11764625
#> 647      5 7.668307 1.490157 -1.7906212 0.07335410
#> 648      5 7.668307 1.490157 -1.7906212 0.07335410
#> 649      8 7.668307 1.490157  0.2225895 0.82385504
#> 650      9 7.668307 1.490157  0.8936597 0.37150400
#> 651      9 7.668307 1.490157  0.8936597 0.37150400
#> 652      6 7.668307 1.490157 -1.1195510 0.26290515
#> 653      7 7.668307 1.490157 -0.4484808 0.65380626
#> 654      8 7.668307 1.490157  0.2225895 0.82385504
#> 655      7 7.668307 1.490157 -0.4484808 0.65380626
#> 656      8 7.668307 1.490157  0.2225895 0.82385504
#> 657      8 7.668307 1.490157  0.2225895 0.82385504
#> 658      9 7.668307 1.490157  0.8936597 0.37150400
#> 659      7 7.668307 1.490157 -0.4484808 0.65380626
#> 660      9 7.668307 1.490157  0.8936597 0.37150400
#> 661      9 7.668307 1.490157  0.8936597 0.37150400
#> 662      7 7.668307 1.490157 -0.4484808 0.65380626
#> 663      9 7.668307 1.490157  0.8936597 0.37150400
#> 664      8 7.668307 1.490157  0.2225895 0.82385504
#> 665      8 7.668307 1.490157  0.2225895 0.82385504
#> 666     11 7.668307 1.490157  2.2358001 0.02536487
#> 667      8 7.668307 1.490157  0.2225895 0.82385504
#> 668      9 7.668307 1.490157  0.8936597 0.37150400
#> 669      9 7.668307 1.490157  0.8936597 0.37150400
#> 670      8 7.668307 1.490157  0.2225895 0.82385504
#> 671      9 7.668307 1.490157  0.8936597 0.37150400
#> 672     10 7.668307 1.490157  1.5647299 0.11764625
#> 673     10 7.668307 1.490157  1.5647299 0.11764625
#> 674      8 7.668307 1.490157  0.2225895 0.82385504
#> 675      9 7.668307 1.490157  0.8936597 0.37150400
#> 676      9 7.668307 1.490157  0.8936597 0.37150400
#> 677      9 7.668307 1.490157  0.8936597 0.37150400
#> 678      9 7.668307 1.490157  0.8936597 0.37150400
#> 679      9 7.668307 1.490157  0.8936597 0.37150400
#> 680      9 7.668307 1.490157  0.8936597 0.37150400
#> 681      6 7.668307 1.490157 -1.1195510 0.26290515
#> 682      6 7.668307 1.490157 -1.1195510 0.26290515
#> 683      7 7.668307 1.490157 -0.4484808 0.65380626
#> 684      8 7.668307 1.490157  0.2225895 0.82385504
#> 685      8 7.668307 1.490157  0.2225895 0.82385504
#> 686      7 7.668307 1.490157 -0.4484808 0.65380626
#> 687      8 7.668307 1.490157  0.2225895 0.82385504
#> 688      8 7.668307 1.490157  0.2225895 0.82385504
#> 689      8 7.668307 1.490157  0.2225895 0.82385504
#> 690      8 7.668307 1.490157  0.2225895 0.82385504
#> 691      7 7.668307 1.490157 -0.4484808 0.65380626
#> 692      6 7.668307 1.490157 -1.1195510 0.26290515
#> 693     10 7.668307 1.490157  1.5647299 0.11764625
#> 694      7 7.668307 1.490157 -0.4484808 0.65380626
#> 695      6 7.668307 1.490157 -1.1195510 0.26290515
#> 696     11 7.668307 1.490157  2.2358001 0.02536487
#> 697      8 7.668307 1.490157  0.2225895 0.82385504
#> 698      6 7.668307 1.490157 -1.1195510 0.26290515
#> 699      7 7.668307 1.490157 -0.4484808 0.65380626
#> 700      7 7.668307 1.490157 -0.4484808 0.65380626
#> 701      6 7.668307 1.490157 -1.1195510 0.26290515
#> 702      8 7.668307 1.490157  0.2225895 0.82385504
#> 703      8 7.668307 1.490157  0.2225895 0.82385504
#> 704      8 7.668307 1.490157  0.2225895 0.82385504
#> 705      8 7.668307 1.490157  0.2225895 0.82385504
#> 706     10 7.668307 1.490157  1.5647299 0.11764625
#> 707      9 7.668307 1.490157  0.8936597 0.37150400
#> 708      6 7.668307 1.490157 -1.1195510 0.26290515
#> 709      8 7.668307 1.490157  0.2225895 0.82385504
#> 710     10 7.668307 1.490157  1.5647299 0.11764625
#> 711      9 7.668307 1.490157  0.8936597 0.37150400
#> 712      9 7.668307 1.490157  0.8936597 0.37150400
#> 713      8 7.668307 1.490157  0.2225895 0.82385504
#> 714      8 7.668307 1.490157  0.2225895 0.82385504
#> 715     10 7.668307 1.490157  1.5647299 0.11764625
#> 716      7 7.668307 1.490157 -0.4484808 0.65380626
#> 717      7 7.668307 1.490157 -0.4484808 0.65380626
#> 718      9 7.668307 1.490157  0.8936597 0.37150400
#> 719      8 7.668307 1.490157  0.2225895 0.82385504
#> 720      8 7.668307 1.490157  0.2225895 0.82385504
#> 721      9 7.668307 1.490157  0.8936597 0.37150400
#> 722      9 7.668307 1.490157  0.8936597 0.37150400
#> 723      8 7.668307 1.490157  0.2225895 0.82385504
#> 724      8 7.668307 1.490157  0.2225895 0.82385504
#> 725      6 7.668307 1.490157 -1.1195510 0.26290515
#> 726     10 7.668307 1.490157  1.5647299 0.11764625
#> 727      8 7.668307 1.490157  0.2225895 0.82385504
#> 728      9 7.668307 1.490157  0.8936597 0.37150400
#> 729      7 7.668307 1.490157 -0.4484808 0.65380626
#> 730      9 7.668307 1.490157  0.8936597 0.37150400
#> 731      9 7.668307 1.490157  0.8936597 0.37150400
#> 732      7 7.668307 1.490157 -0.4484808 0.65380626
#> 733     10 7.668307 1.490157  1.5647299 0.11764625
#> 734      6 7.668307 1.490157 -1.1195510 0.26290515
#> 735      6 7.668307 1.490157 -1.1195510 0.26290515
#> 736      5 7.668307 1.490157 -1.7906212 0.07335410
#> 737      6 7.668307 1.490157 -1.1195510 0.26290515
#> 738      7 7.668307 1.490157 -0.4484808 0.65380626
#> 739     10 7.668307 1.490157  1.5647299 0.11764625
#> 740      9 7.668307 1.490157  0.8936597 0.37150400
#> 741      9 7.668307 1.490157  0.8936597 0.37150400
#> 742      7 7.668307 1.490157 -0.4484808 0.65380626
#> 743      8 7.668307 1.490157  0.2225895 0.82385504
#> 744      7 7.668307 1.490157 -0.4484808 0.65380626
#> 745      9 7.668307 1.490157  0.8936597 0.37150400
#> 746      9 7.668307 1.490157  0.8936597 0.37150400
#> 747      6 7.668307 1.490157 -1.1195510 0.26290515
#> 748      9 7.668307 1.490157  0.8936597 0.37150400
#> 749      9 7.668307 1.490157  0.8936597 0.37150400
#> 750      6 7.668307 1.490157 -1.1195510 0.26290515
#> 751      8 7.668307 1.490157  0.2225895 0.82385504
#> 752      8 7.668307 1.490157  0.2225895 0.82385504
#> 753      9 7.668307 1.490157  0.8936597 0.37150400
#> 754      9 7.668307 1.490157  0.8936597 0.37150400
#> 755      7 7.668307 1.490157 -0.4484808 0.65380626
#> 756      9 7.668307 1.490157  0.8936597 0.37150400
#> 757     11 7.668307 1.490157  2.2358001 0.02536487
#> 758      7 7.668307 1.490157 -0.4484808 0.65380626
#> 759      9 7.668307 1.490157  0.8936597 0.37150400
#> 760      7 7.668307 1.490157 -0.4484808 0.65380626
#> 761      9 7.668307 1.490157  0.8936597 0.37150400
#> 762      7 7.668307 1.490157 -0.4484808 0.65380626
#> 763      8 7.668307 1.490157  0.2225895 0.82385504
#> 764      8 7.668307 1.490157  0.2225895 0.82385504
#> 765      4 7.668307 1.490157 -2.4616914 0.01382836
#> 766      8 7.668307 1.490157  0.2225895 0.82385504
#> 767      9 7.668307 1.490157  0.8936597 0.37150400
#> 768      8 7.668307 1.490157  0.2225895 0.82385504
#> 769     11 7.668307 1.490157  2.2358001 0.02536487
#> 770      8 7.668307 1.490157  0.2225895 0.82385504
#> 771     10 7.668307 1.490157  1.5647299 0.11764625
#> 772      7 7.668307 1.490157 -0.4484808 0.65380626
#> 773      6 7.668307 1.490157 -1.1195510 0.26290515
#> 774     10 7.668307 1.490157  1.5647299 0.11764625
#> 775      7 7.668307 1.490157 -0.4484808 0.65380626
#> 776      9 7.668307 1.490157  0.8936597 0.37150400
#> 777      8 7.668307 1.490157  0.2225895 0.82385504
#> 778      6 7.668307 1.490157 -1.1195510 0.26290515
#> 779      8 7.668307 1.490157  0.2225895 0.82385504
#> 780     10 7.668307 1.490157  1.5647299 0.11764625
#> 781     10 7.668307 1.490157  1.5647299 0.11764625
#> 782     10 7.668307 1.490157  1.5647299 0.11764625
#> 783      9 7.668307 1.490157  0.8936597 0.37150400
#> 784      6 7.668307 1.490157 -1.1195510 0.26290515
#> 785     10 7.668307 1.490157  1.5647299 0.11764625
#> 786      7 7.668307 1.490157 -0.4484808 0.65380626
#> 787      8 7.668307 1.490157  0.2225895 0.82385504
#> 788      9 7.668307 1.490157  0.8936597 0.37150400
#> 789     10 7.668307 1.490157  1.5647299 0.11764625
#> 790      5 7.668307 1.490157 -1.7906212 0.07335410
#> 791      9 7.668307 1.490157  0.8936597 0.37150400
#> 792      8 7.668307 1.490157  0.2225895 0.82385504
#> 793      8 7.668307 1.490157  0.2225895 0.82385504
#> 794      8 7.668307 1.490157  0.2225895 0.82385504
#> 795      7 7.668307 1.490157 -0.4484808 0.65380626
#> 796      7 7.668307 1.490157 -0.4484808 0.65380626
#> 797      6 7.668307 1.490157 -1.1195510 0.26290515
#> 798      8 7.668307 1.490157  0.2225895 0.82385504
#> 799      8 7.668307 1.490157  0.2225895 0.82385504
#> 800      9 7.668307 1.490157  0.8936597 0.37150400
#> 801      8 7.668307 1.490157  0.2225895 0.82385504
#> 802     10 7.668307 1.490157  1.5647299 0.11764625
#> 803      7 7.668307 1.490157 -0.4484808 0.65380626
#> 804      9 7.668307 1.490157  0.8936597 0.37150400
#> 805     10 7.668307 1.490157  1.5647299 0.11764625
#> 806      8 7.668307 1.490157  0.2225895 0.82385504
#> 807     10 7.668307 1.490157  1.5647299 0.11764625
#> 808      8 7.668307 1.490157  0.2225895 0.82385504
#> 809      7 7.668307 1.490157 -0.4484808 0.65380626
#> 810     10 7.668307 1.490157  1.5647299 0.11764625
#> 811     10 7.668307 1.490157  1.5647299 0.11764625
#> 812      9 7.668307 1.490157  0.8936597 0.37150400
#> 813      9 7.668307 1.490157  0.8936597 0.37150400
#> 814      5 7.668307 1.490157 -1.7906212 0.07335410
#> 815     10 7.668307 1.490157  1.5647299 0.11764625
#> 816     10 7.668307 1.490157  1.5647299 0.11764625
#> 817      9 7.668307 1.490157  0.8936597 0.37150400
#> 818     10 7.668307 1.490157  1.5647299 0.11764625
#> 819      9 7.668307 1.490157  0.8936597 0.37150400
#> 820      7 7.668307 1.490157 -0.4484808 0.65380626
#> 821      8 7.668307 1.490157  0.2225895 0.82385504
#> 822      7 7.668307 1.490157 -0.4484808 0.65380626
#> 823      6 7.668307 1.490157 -1.1195510 0.26290515
#> 824      5 7.668307 1.490157 -1.7906212 0.07335410
#> 825      7 7.668307 1.490157 -0.4484808 0.65380626
#> 826      7 7.668307 1.490157 -0.4484808 0.65380626
#> 827      9 7.668307 1.490157  0.8936597 0.37150400
#> 828      6 7.668307 1.490157 -1.1195510 0.26290515
#> 829      8 7.668307 1.490157  0.2225895 0.82385504
#> 830      9 7.668307 1.490157  0.8936597 0.37150400
#> 831      9 7.668307 1.490157  0.8936597 0.37150400
#> 832      9 7.668307 1.490157  0.8936597 0.37150400
#> 833      7 7.668307 1.490157 -0.4484808 0.65380626
#> 834      8 7.668307 1.490157  0.2225895 0.82385504
#> 835      8 7.668307 1.490157  0.2225895 0.82385504
#> 836      8 7.668307 1.490157  0.2225895 0.82385504
#> 837      9 7.668307 1.490157  0.8936597 0.37150400
#> 838      8 7.668307 1.490157  0.2225895 0.82385504
#> 839      8 7.668307 1.490157  0.2225895 0.82385504
#> 840      7 7.668307 1.490157 -0.4484808 0.65380626
#> 841      9 7.668307 1.490157  0.8936597 0.37150400
#> 842      9 7.668307 1.490157  0.8936597 0.37150400
#> 843      7 7.668307 1.490157 -0.4484808 0.65380626
#> 844     10 7.668307 1.490157  1.5647299 0.11764625
#> 845      9 7.668307 1.490157  0.8936597 0.37150400
#> 846      9 7.668307 1.490157  0.8936597 0.37150400
#> 847      9 7.668307 1.490157  0.8936597 0.37150400
#> 848      8 7.668307 1.490157  0.2225895 0.82385504
#> 849      5 7.668307 1.490157 -1.7906212 0.07335410
#> 850      9 7.668307 1.490157  0.8936597 0.37150400
#> 851     10 7.668307 1.490157  1.5647299 0.11764625
#> 852      8 7.668307 1.490157  0.2225895 0.82385504
#> 853      7 7.668307 1.490157 -0.4484808 0.65380626
#> 854     10 7.668307 1.490157  1.5647299 0.11764625
#> 855      7 7.668307 1.490157 -0.4484808 0.65380626
#> 856      9 7.668307 1.490157  0.8936597 0.37150400
#> 857      9 7.668307 1.490157  0.8936597 0.37150400
#> 858      7 7.668307 1.490157 -0.4484808 0.65380626
#> 859      8 7.668307 1.490157  0.2225895 0.82385504
#> 860     10 7.668307 1.490157  1.5647299 0.11764625
#> 861      8 7.668307 1.490157  0.2225895 0.82385504
#> 862      7 7.668307 1.490157 -0.4484808 0.65380626
#> 863      7 7.668307 1.490157 -0.4484808 0.65380626
#> 864      7 7.668307 1.490157 -0.4484808 0.65380626
#> 865      7 7.668307 1.490157 -0.4484808 0.65380626
#> 866      9 7.668307 1.490157  0.8936597 0.37150400
#> 867      6 7.668307 1.490157 -1.1195510 0.26290515
#> 868      8 7.668307 1.490157  0.2225895 0.82385504
#> 869      9 7.668307 1.490157  0.8936597 0.37150400
#> 870      8 7.668307 1.490157  0.2225895 0.82385504
#> 871      8 7.668307 1.490157  0.2225895 0.82385504
#> 872     10 7.668307 1.490157  1.5647299 0.11764625
#> 873      6 7.668307 1.490157 -1.1195510 0.26290515
#> 874      7 7.668307 1.490157 -0.4484808 0.65380626
#> 875      8 7.668307 1.490157  0.2225895 0.82385504
#> 876      8 7.668307 1.490157  0.2225895 0.82385504
#> 877      7 7.668307 1.490157 -0.4484808 0.65380626
plot(lsrq, sf = FastFood.sf, sig = 0.05)

# }

# Case 3: With a sf object (poligons)
fname <- system.file("shape/nc.shp", package="sf")
nc <- sf::st_read(fname)
#> Reading layer `nc' from data source 
#>   `/home/runner/work/_temp/Library/sf/shape/nc.shp' using driver `ESRI Shapefile'
#> Simple feature collection with 100 features and 14 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
#> Geodetic CRS:  NAD27
listw <- spdep::poly2nb(as(nc,"Spatial"), queen = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
p <- c(1/6,3/6,2/6)
rho = 0.5
nc$fx <- dgp.spq(p = p, listw = listw, rho = rho)
plot(nc["fx"])

formula <- ~ fx
lsrq <- local.sp.runs.test(formula = formula, data = nc, listw = listw)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     runs.i      E.i     Std.i     z.value    p.value
#> 1        2 2.855152 0.8722689 -0.98037608 0.32690051
#> 2        3 2.855152 0.8722689  0.16605945 0.86811017
#> 3        5 4.091919 1.1317511  0.80236794 0.42234015
#> 4        1 2.236768 0.7064182 -1.75075861 0.07998750
#> 5        3 3.473535 1.0106752 -0.46853368 0.63940299
#> 6        1 2.855152 0.8722689 -2.12681160 0.03343574
#> 7        2 2.855152 0.8722689 -0.98037608 0.32690051
#> 8        4 4.091919 1.1317511 -0.08121856 0.93526814
#> 9        5 3.473535 1.0106752  1.51034151 0.13095630
#> 10       2 2.855152 0.8722689 -0.98037608 0.32690051
#> 11       4 3.473535 1.0106752  0.52090392 0.60243371
#> 12       3 3.473535 1.0106752 -0.46853368 0.63940299
#> 13       3 4.091919 1.1317511 -0.96480505 0.33464246
#> 14       5 3.473535 1.0106752  1.51034151 0.13095630
#> 15       3 2.855152 0.8722689  0.16605945 0.86811017
#> 16       5 4.710303 1.2405813  0.23351712 0.81535987
#> 17       2 2.855152 0.8722689 -0.98037608 0.32690051
#> 18       5 5.947071 1.4323964 -0.66117921 0.50849739
#> 19       5 3.473535 1.0106752  1.51034151 0.13095630
#> 20       3 2.855152 0.8722689  0.16605945 0.86811017
#> 21       2 2.236768 0.7064182 -0.33516646 0.73749952
#> 22       5 4.091919 1.1317511  0.80236794 0.42234015
#> 23       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 24       6 4.091919 1.1317511  1.68595444 0.09180458
#> 25       5 4.710303 1.2405813  0.23351712 0.81535987
#> 26       5 4.091919 1.1317511  0.80236794 0.42234015
#> 27       5 4.710303 1.2405813  0.23351712 0.81535987
#> 28       2 4.091919 1.1317511 -1.84839155 0.06454572
#> 29       5 4.091919 1.1317511  0.80236794 0.42234015
#> 30       5 4.091919 1.1317511  0.80236794 0.42234015
#> 31       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 32       4 2.855152 0.8722689  1.31249497 0.18935318
#> 33       3 4.091919 1.1317511 -0.96480505 0.33464246
#> 34       5 4.710303 1.2405813  0.23351712 0.81535987
#> 35       4 3.473535 1.0106752  0.52090392 0.60243371
#> 36       5 4.710303 1.2405813  0.23351712 0.81535987
#> 37       4 4.710303 1.2405813 -0.57255663 0.56694493
#> 38       3 2.855152 0.8722689  0.16605945 0.86811017
#> 39       6 6.565455 1.5186493 -0.37234044 0.70963939
#> 40       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 41       3 3.473535 1.0106752 -0.46853368 0.63940299
#> 42       5 4.710303 1.2405813  0.23351712 0.81535987
#> 43       6 4.710303 1.2405813  1.03959088 0.29853002
#> 44       3 4.091919 1.1317511 -0.96480505 0.33464246
#> 45       1 2.236768 0.7064182 -1.75075861 0.07998750
#> 46       6 4.710303 1.2405813  1.03959088 0.29853002
#> 47       4 4.710303 1.2405813 -0.57255663 0.56694493
#> 48       7 5.947071 1.4323964  0.73508234 0.46228935
#> 49       5 4.710303 1.2405813  0.23351712 0.81535987
#> 50       5 4.091919 1.1317511  0.80236794 0.42234015
#> 51       5 5.328687 1.3401523 -0.24526083 0.80625447
#> 52       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 53       6 4.710303 1.2405813  1.03959088 0.29853002
#> 54       5 4.710303 1.2405813  0.23351712 0.81535987
#> 55       5 4.091919 1.1317511  0.80236794 0.42234015
#> 56       3 2.236768 0.7064182  1.08042568 0.27995266
#> 57       4 4.710303 1.2405813 -0.57255663 0.56694493
#> 58       5 3.473535 1.0106752  1.51034151 0.13095630
#> 59       4 3.473535 1.0106752  0.52090392 0.60243371
#> 60       3 2.855152 0.8722689  0.16605945 0.86811017
#> 61       4 4.710303 1.2405813 -0.57255663 0.56694493
#> 62       6 4.710303 1.2405813  1.03959088 0.29853002
#> 63       4 5.328687 1.3401523 -0.99144469 0.32146849
#> 64       4 3.473535 1.0106752  0.52090392 0.60243371
#> 65       2 4.091919 1.1317511 -1.84839155 0.06454572
#> 66       3 3.473535 1.0106752 -0.46853368 0.63940299
#> 67       5 5.947071 1.4323964 -0.66117921 0.50849739
#> 68       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 69       5 4.091919 1.1317511  0.80236794 0.42234015
#> 70       3 4.710303 1.2405813 -1.37863039 0.16800874
#> 71       5 4.091919 1.1317511  0.80236794 0.42234015
#> 72       2 3.473535 1.0106752 -1.45797128 0.14484846
#> 73       4 2.855152 0.8722689  1.31249497 0.18935318
#> 74       7 4.710303 1.2405813  1.84566464 0.06494091
#> 75       3 2.855152 0.8722689  0.16605945 0.86811017
#> 76       1 2.855152 0.8722689 -2.12681160 0.03343574
#> 77       3 2.236768 0.7064182  1.08042568 0.27995266
#> 78       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 79       5 5.328687 1.3401523 -0.24526083 0.80625447
#> 80       3 2.236768 0.7064182  1.08042568 0.27995266
#> 81       3 2.855152 0.8722689  0.16605945 0.86811017
#> 82       4 4.710303 1.2405813 -0.57255663 0.56694493
#> 83       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 84       3 3.473535 1.0106752 -0.46853368 0.63940299
#> 85       1 3.473535 1.0106752 -2.44740888 0.01438875
#> 86       5 3.473535 1.0106752  1.51034151 0.13095630
#> 87       2 3.473535 1.0106752 -1.45797128 0.14484846
#> 88       5 4.710303 1.2405813  0.23351712 0.81535987
#> 89       3 3.473535 1.0106752 -0.46853368 0.63940299
#> 90       2 2.236768 0.7064182 -0.33516646 0.73749952
#> 91       5 4.710303 1.2405813  0.23351712 0.81535987
#> 92       4 2.855152 0.8722689  1.31249497 0.18935318
#> 93       4 3.473535 1.0106752  0.52090392 0.60243371
#> 94       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 95       2 2.855152 0.8722689 -0.98037608 0.32690051
#> 96       4 4.091919 1.1317511 -0.08121856 0.93526814
#> 97       4 5.328687 1.3401523 -0.99144469 0.32146849
#> 98       2 3.473535 1.0106752 -1.45797128 0.14484846
#> 99       1 2.236768 0.7064182 -1.75075861 0.07998750
#> 100      3 2.855152 0.8722689  0.16605945 0.86811017
plot(lsrq, sf = nc)

# Version boot
lsrq <- local.sp.runs.test(formula = formula, data = nc, listw = listw,
                           distr ="bootstrap", nsim = 399)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>     SRQ     EP.i     SdP.i zseudo.value pseudo.value
#> 1     2 2.899749 0.8853781 -1.016231773   0.30951903
#> 2     3 2.847118 0.8560664  0.178586851   0.85826212
#> 3     5 4.142857 1.1128048  0.770254455   0.44114897
#> 4     1 2.228070 0.6950030 -1.766999799   0.07722826
#> 5     3 3.493734 1.0046804 -0.491434216   0.62311937
#> 6     1 2.909774 0.8864585 -2.154386641   0.03120986
#> 7     2 2.894737 0.8704804 -1.027865634   0.30401304
#> 8     4 4.035088 1.1247655 -0.031195587   0.97511356
#> 9     5 3.501253 1.0071969  1.488037561   0.13674099
#> 10    2 2.837093 0.8629898 -0.969991500   0.33205073
#> 11    4 3.416040 1.0714867  0.544999665   0.58575375
#> 12    3 3.428571 0.9533257 -0.449554056   0.65303202
#> 13    3 4.110276 1.1660480 -0.952169772   0.34101089
#> 14    5 3.486216 0.9995906  1.514404456   0.12992329
#> 15    3 2.889724 0.8698580  0.126774358   0.89911899
#> 16    5 4.709273 1.2957950  0.224361739   0.82247584
#> 17    2 2.944862 0.8921587 -1.059074076   0.28956605
#> 18    5 6.017544 1.3345780 -0.762446143   0.44579378
#> 19    5 3.501253 1.0096885  1.484365649   0.13771194
#> 20    3 2.877193 0.8839474  0.138930237   0.88950528
#> 21    2 2.270677 0.7413944 -0.365091374   0.71504320
#> 22    5 4.147870 1.1098867  0.767763352   0.44262779
#> 23    4 4.145363 1.1158620 -0.130270057   0.89635277
#> 24    6 4.080201 1.2210811  1.572212880   0.11590119
#> 25    5 4.726817 1.2290690  0.222268196   0.82410511
#> 26    5 4.087719 1.0912280  0.836012949   0.40314762
#> 27    5 4.661654 1.2474328  0.271233730   0.78621127
#> 28    2 4.110276 1.0717335 -1.969030221   0.04894962
#> 29    5 4.090226 1.1239198  0.809465631   0.41824736
#> 30    5 4.132832 1.1185506  0.775260316   0.43818585
#> 31    4 4.065163 1.1256553 -0.057888863   0.95383715
#> 32    4 2.799499 0.8938088  1.343129779   0.17922995
#> 33    3 4.087719 1.1711887 -0.928731037   0.35302849
#> 34    5 4.834586 1.2848975  0.128736755   0.89756595
#> 35    4 3.426065 1.0218332  0.561671764   0.57433968
#> 36    5 4.714286 1.3027113  0.219322798   0.82639860
#> 37    4 4.789474 1.2683981 -0.622417921   0.53366710
#> 38    3 2.817043 0.8618726  0.212278927   0.83188943
#> 39    6 6.591479 1.5273150 -0.387267006   0.69855855
#> 40    4 4.007519 1.1375030 -0.006609914   0.99472609
#> 41    3 3.448622 0.9958415 -0.450494923   0.65235361
#> 42    5 4.614035 1.3305092  0.290088116   0.77174883
#> 43    6 4.711779 1.2559953  1.025657137   0.30505322
#> 44    3 4.152882 1.1557962 -0.997478825   0.31853215
#> 45    1 2.185464 0.7268637 -1.630929726   0.10290515
#> 46    6 4.616541 1.2322415  1.122717117   0.26155766
#> 47    4 4.659148 1.2617728 -0.522398219   0.60139310
#> 48    7 5.879699 1.4373216  0.779436386   0.43572270
#> 49    5 4.774436 1.2417560  0.181649143   0.85585808
#> 50    5 4.157895 1.0855985  0.775705962   0.43792262
#> 51    5 5.253133 1.3084895 -0.193454238   0.84660324
#> 52    4 4.070175 1.1691545 -0.060022381   0.95213781
#> 53    6 4.696742 1.2464077  1.045611464   0.29574045
#> 54    5 4.704261 1.2946573  0.228430600   0.81931150
#> 55    5 4.005013 1.1185844  0.889505929   0.37373124
#> 56    3 2.223058 0.6966320  1.115283746   0.26472885
#> 57    4 4.636591 1.2054168 -0.528109034   0.59742366
#> 58    5 3.365915 0.9982100  1.637015459   0.10162724
#> 59    4 3.478697 1.0169035  0.512637873   0.60820466
#> 60    3 2.746867 0.9125501  0.277390611   0.78148019
#> 61    4 4.746867 1.1489930 -0.650018909   0.51568001
#> 62    6 4.794486 1.2572882  0.958820590   0.33764913
#> 63    4 5.350877 1.3625254 -0.991451045   0.32146539
#> 64    4 3.503759 1.0415300  0.476453469   0.63375135
#> 65    2 4.062657 1.1940320 -1.727471764   0.08408297
#> 66    3 3.385965 1.0521113 -0.366847985   0.71373241
#> 67    5 6.045113 1.4381625 -0.726700046   0.46740973
#> 68    4 4.070175 1.1073476 -0.063372545   0.94946985
#> 69    5 4.042607 1.1542751  0.829432684   0.40685961
#> 70    3 4.684211 1.2032311 -1.399739826   0.16159124
#> 71    5 4.105263 1.1248439  0.795432028   0.42636224
#> 72    2 3.556391 0.9879693 -1.575343392   0.11517720
#> 73    4 2.794486 0.8669647  1.390499252   0.16437733
#> 74    7 4.812030 1.1722313  1.866500140   0.06197142
#> 75    3 2.779449 0.8748173  0.252111373   0.80095498
#> 76    1 2.786967 0.8951183 -1.996347779   0.04589608
#> 77    3 2.288221 0.6722322  1.058829814   0.28967729
#> 78    4 4.060150 1.1654106 -0.051613033   0.95883703
#> 79    5 5.298246 1.3631076 -0.218798297   0.82680717
#> 80    3 2.235589 0.7432352  1.028491401   0.30371873
#> 81    3 2.789474 0.9026981  0.233218974   0.81559137
#> 82    4 4.649123 1.3156167 -0.493398132   0.62173130
#> 83    4 4.037594 1.1145859 -0.033729105   0.97309317
#> 84    3 3.431078 0.9922497 -0.434444789   0.66396548
#> 85    1 3.395990 1.0265735 -2.333968186   0.01959739
#> 86    5 3.516291 1.0317134  1.438102233   0.15040505
#> 87    2 3.401003 1.0678485 -1.311986163   0.18952480
#> 88    5 4.779449 1.2527272  0.176056995   0.86024917
#> 89    3 3.483709 1.0070656 -0.480315542   0.63100304
#> 90    2 2.195489 0.7276863 -0.268644228   0.78820347
#> 91    5 4.583960 1.2709919  0.327334969   0.74341455
#> 92    4 2.927318 0.8781150  1.221573105   0.22186910
#> 93    4 3.523810 0.9918307  0.480112654   0.63114729
#> 94    4 4.055138 1.2428559 -0.044363826   0.96461440
#> 95    2 2.807018 0.9217369 -0.875540041   0.38128013
#> 96    4 4.037594 1.2055526 -0.031184028   0.97512278
#> 97    4 5.263158 1.2832203 -0.984365584   0.32493579
#> 98    2 3.436090 1.0728728 -1.338546595   0.18071832
#> 99    1 2.280702 0.6772717 -1.890971823   0.05862811
#> 100   3 2.907268 0.8411062  0.110249849   0.91221123
plot(lsrq, sf = nc)


# Case 4: With isolated areas
data(provinces_spain)
listw <- spdep::poly2nb(as(provinces_spain,"Spatial"), queen = FALSE)
#> although coordinates are longitude/latitude, st_intersects assumes that they
#> are planar
#> Warning: some observations have no neighbours;
#> if this seems unexpected, try increasing the snap argument.
#> Warning: neighbour object has 4 sub-graphs;
#> if this sub-graph count seems unexpected, try increasing the snap argument.
provinces_spain$Mal2Fml<- factor(provinces_spain$Mal2Fml > 100)
levels(provinces_spain$Mal2Fml) = c("men","woman")
plot(provinces_spain["Mal2Fml"])

formula <- ~ Mal2Fml
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>    runs.i      E.i     Std.i     z.value    p.value
#> 1       3 2.963265 1.2181954  0.03015501 0.97594343
#> 2       3 3.748571 1.4356803 -0.52140538 0.60208441
#> 3       3 2.177959 0.9361800  0.87807987 0.37990038
#> 4       3 1.785306 0.7491685  1.62138936 0.10493416
#> 5       4 3.355918 1.3328119  0.48325020 0.62891810
#> 6       3 3.355918 1.3328119 -0.26704320 0.78943590
#> 7       0 1.000000       NaN         NaN        NaN
#> 8       3 2.177959 0.9361800  0.87807987 0.37990038
#> 9       4 4.141224 1.5291733 -0.09235349 0.92641719
#> 10      2 2.570612 1.0881246 -0.52439971 0.60000056
#> 11      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 12      3 2.177959 0.9361800  0.87807987 0.37990038
#> 13      5 3.355918 1.3328119  1.23354359 0.21737302
#> 14      1 3.355918 1.3328119 -1.76762999 0.07712278
#> 15      1 1.785306 0.7491685 -1.04823694 0.29452945
#> 16      5 3.748571 1.4356803  0.87166242 0.38339257
#> 17      2 1.785306 0.7491685  0.28657621 0.77443683
#> 18      5 3.355918 1.3328119  1.23354359 0.21737302
#> 19      5 3.355918 1.3328119  1.23354359 0.21737302
#> 20      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 21      2 2.177959 0.9361800 -0.19009078 0.84923800
#> 22      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 23      1 3.748571 1.4356803 -1.91447317 0.05555972
#> 24      4 2.963265 1.2181954  0.85104136 0.39474638
#> 25      5 2.963265 1.2181954  1.67192771 0.09453858
#> 26      1 2.963265 1.2181954 -1.61161769 0.10704516
#> 27      2 2.963265 1.2181954 -0.79073134 0.42910078
#> 28      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 29      4 2.570612 1.0881246  1.31362503 0.18897242
#> 30      2 2.963265 1.2181954 -0.79073134 0.42910078
#> 31      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 32      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 33      3 2.570612 1.0881246  0.39461266 0.69312877
#> 34      0 1.000000       NaN         NaN        NaN
#> 35      1 2.177959 0.9361800 -1.25826142 0.20829723
#> 36      3 2.570612 1.0881246  0.39461266 0.69312877
#> 37      0 1.000000       NaN         NaN        NaN
#> 38      3 2.963265 1.2181954  0.03015501 0.97594343
#> 39      3 3.355918 1.3328119 -0.26704320 0.78943590
#> 40      1 2.963265 1.2181954 -1.61161769 0.10704516
#> 41      5 2.963265 1.2181954  1.67192771 0.09453858
#> 42      5 3.355918 1.3328119  1.23354359 0.21737302
#> 43      4 3.355918 1.3328119  0.48325020 0.62891810
#> 44      4 2.963265 1.2181954  0.85104136 0.39474638
#> 45      5 3.748571 1.4356803  0.87166242 0.38339257
#> 46      3 2.570612 1.0881246  0.39461266 0.69312877
#> 47      1 2.570612 1.0881246 -1.44341209 0.14890442
#> 48      8 4.141224 1.5291733  2.52343903 0.01162132
#> 49      5 2.963265 1.2181954  1.67192771 0.09453858
#> 50      1 2.177959 0.9361800 -1.25826142 0.20829723
plot(lsrq, sf = provinces_spain, sig = 0.1)


# Boots Version
lsrq <- local.sp.runs.test(formula = formula, data = provinces_spain, listw = listw,
                           distr ="bootstrap", nsim = 199)
#> Warning: st_centroid assumes attributes are constant over geometries
#> Warning: st_centroid does not give correct centroids for longitude/latitude data
print(lsrq)
#>    SRQ     EP.i     SdP.i zseudo.value pseudo.value
#> 1    3 2.904523 1.2333455   0.07741334   0.93829473
#> 2    3 3.748744 1.3696516  -0.54666730   0.58460732
#> 3    3 2.120603 0.9241582   0.95156545   0.34131741
#> 4    3 1.768844 0.7432077   1.65654326   0.09761185
#> 5    4 3.296482 1.2900308   0.54534945   0.58551320
#> 6    3 3.487437 1.2667436  -0.38479546   0.70038896
#> 7    0 0.000000 0.0000000          NaN          NaN
#> 8    3 2.266332 0.9125512   0.80397503   0.42141140
#> 9    4 4.160804 1.5256300  -0.10540172   0.91605705
#> 10   2 2.623116 1.1297932  -0.55153065   0.58126996
#> 11   1 2.261307 0.9385462  -1.34389390   0.17898270
#> 12   3 2.211055 1.0128859   0.77890782   0.43603401
#> 13   5 3.467337 1.3362424   1.14699493   0.25138372
#> 14   1 3.457286 1.2897947  -1.90517640   0.05675714
#> 15   1 1.723618 0.7170330  -1.00918379   0.31288650
#> 16   5 3.814070 1.4179951   0.83634255   0.40296222
#> 17   2 1.824121 0.7681942   0.22895174   0.81890643
#> 18   5 3.195980 1.2700051   1.42048252   0.15546725
#> 19   5 3.552764 1.4688620   0.98527719   0.32448793
#> 20   1 2.221106 0.9163811  -1.33253024   0.18268601
#> 21   2 2.100503 0.8989049  -0.11180550   0.91097763
#> 22   1 2.567839 1.0797357  -1.45205833   0.14648539
#> 23   1 3.839196 1.5189947  -1.86912834   0.06160496
#> 24   4 3.005025 1.1827783   0.84121840   0.40022559
#> 25   5 2.919598 1.2364693   1.68253426   0.09246529
#> 26   1 2.869347 1.1472475  -1.62941887   0.10322438
#> 27   2 3.030151 1.2427956  -0.82889798   0.40716214
#> 28   1 2.633166 1.1464066  -1.42459567   0.15427411
#> 29   4 2.452261 1.0132867   1.52744402   0.12665064
#> 30   2 3.035176 1.2406291  -0.83439597   0.40405789
#> 31   1 2.603015 1.0580098  -1.51512304   0.12974125
#> 32   1 2.110553 0.9308621  -1.19303683   0.23285495
#> 33   3 2.547739 1.0232067   0.44200386   0.65848641
#> 34   0 0.000000 0.0000000          NaN          NaN
#> 35   1 2.125628 0.8985378  -1.25273320   0.21030282
#> 36   3 2.587940 1.1595259   0.35536964   0.72231269
#> 37   0 0.000000 0.0000000          NaN          NaN
#> 38   3 2.864322 1.2499226   0.10854944   0.91355987
#> 39   3 3.417085 1.4431691  -0.28900663   0.77257630
#> 40   1 2.974874 1.1825208  -1.67005468   0.09490855
#> 41   5 2.934673 1.1852433   1.74253384   0.08141508
#> 42   5 3.351759 1.3768961   1.19707015   0.23127922
#> 43   4 3.452261 1.3013134   0.42091220   0.67381919
#> 44   4 2.974874 1.1739478   0.87322932   0.38253809
#> 45   5 3.944724 1.4536474   0.72595073   0.46786897
#> 46   3 2.648241 1.1750282   0.29936199   0.76466386
#> 47   1 2.497487 1.0292410  -1.45494340   0.14568493
#> 48   8 4.130653 1.5995628   2.41900273   0.01556312
#> 49   5 2.984925 1.2491508   1.61315625   0.10671056
#> 50   1 2.251256 0.9832876  -1.27252322   0.20318728
plot(lsrq, sf = provinces_spain, sig = 0.10)


# Case 5: SRQ test based on a distance matrix (inverse distance)
# \donttest{
N <- 100
cx <- runif(N)
cy <- runif(N)
coor <- as.data.frame(cbind(cx,cy))
coor <- sf::st_as_sf(coor,coords = c("cx","cy"))
n = dim(coor)[1]
dis <- 1/matrix(as.numeric(sf::st_distance(coor,coor)), ncol = n, nrow = n)
diag(dis) <- 0
dis <- (dis < quantile(dis,.10))*dis
p <- c(1/6,3/6,2/6)
rho <- 0.5
fx <- dgp.spq(p = p, listw = dis, rho = rho)
lsrq <- local.sp.runs.test(fx = fx, listw = dis)
print(lsrq)
#>     runs.i       E.i     Std.i     z.value    p.value
#> 1        3  2.855152 0.8722689  0.16605945 0.86811017
#> 2        5  4.091919 1.1317511  0.80236794 0.42234015
#> 3        3  3.473535 1.0106752 -0.46853368 0.63940299
#> 4        3  3.473535 1.0106752 -0.46853368 0.63940299
#> 5       15 14.604444 2.3462098  0.16859343 0.86611645
#> 6       15 14.604444 2.3462098  0.16859343 0.86611645
#> 7       24 22.643434 2.9150932  0.46535928 0.64167419
#> 8        2  2.236768 0.7064182 -0.33516646 0.73749952
#> 9        4  3.473535 1.0106752  0.52090392 0.60243371
#> 10       0  1.000000       NaN         NaN        NaN
#> 11      21 22.025051 2.8765991 -0.35634111 0.72158513
#> 12       0  1.000000       NaN         NaN        NaN
#> 13       7 10.275758 1.9514092 -1.67866257 0.09321783
#> 14       0  1.000000       NaN         NaN        NaN
#> 15       0  1.000000       NaN         NaN        NaN
#> 16       0  1.000000       NaN         NaN        NaN
#> 17       6  5.328687 1.3401523  0.50092302 0.61642530
#> 18       4  3.473535 1.0106752  0.52090392 0.60243371
#> 19      18 17.696364 2.5846046  0.11747885 0.90648061
#> 20       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 21       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 22       3  2.236768 0.7064182  1.08042568 0.27995266
#> 23      21 23.261818 2.9528798 -0.76597029 0.44369398
#> 24       9  7.183838 1.5998803  1.13518595 0.25629741
#> 25       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 26       0  1.000000       NaN         NaN        NaN
#> 27       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 28       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 29       0  1.000000       NaN         NaN        NaN
#> 30      21 24.498586 3.0264361 -1.15600849 0.24767769
#> 31       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 32       5  4.091919 1.1317511  0.80236794 0.42234015
#> 33       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 34      10  9.038990 1.8199699  0.52803625 0.59747417
#> 35       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 36       8  7.183838 1.5998803  0.51013918 0.60995396
#> 37       9  8.420606 1.7500327  0.33107607 0.74058703
#> 38       3  2.855152 0.8722689  0.16605945 0.86811017
#> 39       0  1.000000       NaN         NaN        NaN
#> 40       4  3.473535 1.0106752  0.52090392 0.60243371
#> 41       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 42       7  9.038990 1.8199699 -1.12034263 0.26256778
#> 43       6  6.565455 1.5186493 -0.37234044 0.70963939
#> 44       9  9.038990 1.8199699 -0.02142338 0.98290793
#> 45       3  2.236768 0.7064182  1.08042568 0.27995266
#> 46       3  2.855152 0.8722689  0.16605945 0.86811017
#> 47       8  6.565455 1.5186493  0.94461932 0.34485326
#> 48       7  7.183838 1.5998803 -0.11490759 0.90851837
#> 49       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 50       8  7.802222 1.6768193  0.11794817 0.90610872
#> 51       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 52       8  6.565455 1.5186493  0.94461932 0.34485326
#> 53       5  4.710303 1.2405813  0.23351712 0.81535987
#> 54      14  9.657374 1.8869954  2.30134436 0.02137217
#> 55       6  7.802222 1.6768193 -1.07478616 0.28247048
#> 56       3  2.236768 0.7064182  1.08042568 0.27995266
#> 57       5  4.091919 1.1317511  0.80236794 0.42234015
#> 58       0  1.000000       NaN         NaN        NaN
#> 59       0  1.000000       NaN         NaN        NaN
#> 60       6  5.328687 1.3401523  0.50092302 0.61642530
#> 61       7  8.420606 1.7500327 -0.81175974 0.41692951
#> 62       8  7.802222 1.6768193  0.11794817 0.90610872
#> 63       0  1.000000       NaN         NaN        NaN
#> 64      14 11.512525 2.0733657  1.19972796 0.23024501
#> 65      12 10.894141 2.0134619  0.54923242 0.58284596
#> 66       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 67       0  1.000000       NaN         NaN        NaN
#> 68       6  5.328687 1.3401523  0.50092302 0.61642530
#> 69       0  1.000000       NaN         NaN        NaN
#> 70       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 71       7  9.657374 1.8869954 -1.40825659 0.15905510
#> 72       2  3.473535 1.0106752 -1.45797128 0.14484846
#> 73       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 74       3  2.855152 0.8722689  0.16605945 0.86811017
#> 75      19 16.459596 2.4927161  1.01913090 0.30814083
#> 76       7  6.565455 1.5186493  0.28613944 0.77477133
#> 77       4  3.473535 1.0106752  0.52090392 0.60243371
#> 78      20 20.788283 2.7973712 -0.28179415 0.77810136
#> 79       6  5.947071 1.4323964  0.03695157 0.97052362
#> 80       3  2.855152 0.8722689  0.16605945 0.86811017
#> 81       8  7.802222 1.6768193  0.11794817 0.90610872
#> 82      13 12.749293 2.1874260  0.11461283 0.90875201
#> 83       0  1.000000       NaN         NaN        NaN
#> 84       5  4.091919 1.1317511  0.80236794 0.42234015
#> 85      19 17.696364 2.5846046  0.50438523 0.61399070
#> 86       8  7.183838 1.5998803  0.51013918 0.60995396
#> 87       5  4.091919 1.1317511  0.80236794 0.42234015
#> 88       0  1.000000       NaN         NaN        NaN
#> 89       0  1.000000       NaN         NaN        NaN
#> 90       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 91       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 92      10 11.512525 2.0733657 -0.72950241 0.46569439
#> 93      19 17.696364 2.5846046  0.50438523 0.61399070
#> 94       9  6.565455 1.5186493  1.60309920 0.10891276
#> 95       7  6.565455 1.5186493  0.28613944 0.77477133
#> 96       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 97      19 15.841212 2.4451048  1.29188238 0.19639788
#> 98      25 21.406667 2.8373687  1.26643156 0.20535862
#> 99       6  5.947071 1.4323964  0.03695157 0.97052362
#> 100      0  1.000000       NaN         NaN        NaN
plot(lsrq, coor = cbind(cx,cy), sig = 0.05)

lsrq <- local.sp.runs.test(fx = fx, listw = dis, data = )
print(lsrq)
#>     runs.i       E.i     Std.i     z.value    p.value
#> 1        3  2.855152 0.8722689  0.16605945 0.86811017
#> 2        5  4.091919 1.1317511  0.80236794 0.42234015
#> 3        3  3.473535 1.0106752 -0.46853368 0.63940299
#> 4        3  3.473535 1.0106752 -0.46853368 0.63940299
#> 5       15 14.604444 2.3462098  0.16859343 0.86611645
#> 6       15 14.604444 2.3462098  0.16859343 0.86611645
#> 7       24 22.643434 2.9150932  0.46535928 0.64167419
#> 8        2  2.236768 0.7064182 -0.33516646 0.73749952
#> 9        4  3.473535 1.0106752  0.52090392 0.60243371
#> 10       0  1.000000       NaN         NaN        NaN
#> 11      21 22.025051 2.8765991 -0.35634111 0.72158513
#> 12       0  1.000000       NaN         NaN        NaN
#> 13       7 10.275758 1.9514092 -1.67866257 0.09321783
#> 14       0  1.000000       NaN         NaN        NaN
#> 15       0  1.000000       NaN         NaN        NaN
#> 16       0  1.000000       NaN         NaN        NaN
#> 17       6  5.328687 1.3401523  0.50092302 0.61642530
#> 18       4  3.473535 1.0106752  0.52090392 0.60243371
#> 19      18 17.696364 2.5846046  0.11747885 0.90648061
#> 20       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 21       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 22       3  2.236768 0.7064182  1.08042568 0.27995266
#> 23      21 23.261818 2.9528798 -0.76597029 0.44369398
#> 24       9  7.183838 1.5998803  1.13518595 0.25629741
#> 25       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 26       0  1.000000       NaN         NaN        NaN
#> 27       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 28       2  2.236768 0.7064182 -0.33516646 0.73749952
#> 29       0  1.000000       NaN         NaN        NaN
#> 30      21 24.498586 3.0264361 -1.15600849 0.24767769
#> 31       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 32       5  4.091919 1.1317511  0.80236794 0.42234015
#> 33       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 34      10  9.038990 1.8199699  0.52803625 0.59747417
#> 35       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 36       8  7.183838 1.5998803  0.51013918 0.60995396
#> 37       9  8.420606 1.7500327  0.33107607 0.74058703
#> 38       3  2.855152 0.8722689  0.16605945 0.86811017
#> 39       0  1.000000       NaN         NaN        NaN
#> 40       4  3.473535 1.0106752  0.52090392 0.60243371
#> 41       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 42       7  9.038990 1.8199699 -1.12034263 0.26256778
#> 43       6  6.565455 1.5186493 -0.37234044 0.70963939
#> 44       9  9.038990 1.8199699 -0.02142338 0.98290793
#> 45       3  2.236768 0.7064182  1.08042568 0.27995266
#> 46       3  2.855152 0.8722689  0.16605945 0.86811017
#> 47       8  6.565455 1.5186493  0.94461932 0.34485326
#> 48       7  7.183838 1.5998803 -0.11490759 0.90851837
#> 49       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 50       8  7.802222 1.6768193  0.11794817 0.90610872
#> 51       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 52       8  6.565455 1.5186493  0.94461932 0.34485326
#> 53       5  4.710303 1.2405813  0.23351712 0.81535987
#> 54      14  9.657374 1.8869954  2.30134436 0.02137217
#> 55       6  7.802222 1.6768193 -1.07478616 0.28247048
#> 56       3  2.236768 0.7064182  1.08042568 0.27995266
#> 57       5  4.091919 1.1317511  0.80236794 0.42234015
#> 58       0  1.000000       NaN         NaN        NaN
#> 59       0  1.000000       NaN         NaN        NaN
#> 60       6  5.328687 1.3401523  0.50092302 0.61642530
#> 61       7  8.420606 1.7500327 -0.81175974 0.41692951
#> 62       8  7.802222 1.6768193  0.11794817 0.90610872
#> 63       0  1.000000       NaN         NaN        NaN
#> 64      14 11.512525 2.0733657  1.19972796 0.23024501
#> 65      12 10.894141 2.0134619  0.54923242 0.58284596
#> 66       9 10.275758 1.9514092 -0.65376220 0.51326502
#> 67       0  1.000000       NaN         NaN        NaN
#> 68       6  5.328687 1.3401523  0.50092302 0.61642530
#> 69       0  1.000000       NaN         NaN        NaN
#> 70       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 71       7  9.657374 1.8869954 -1.40825659 0.15905510
#> 72       2  3.473535 1.0106752 -1.45797128 0.14484846
#> 73       1  2.236768 0.7064182 -1.75075861 0.07998750
#> 74       3  2.855152 0.8722689  0.16605945 0.86811017
#> 75      19 16.459596 2.4927161  1.01913090 0.30814083
#> 76       7  6.565455 1.5186493  0.28613944 0.77477133
#> 77       4  3.473535 1.0106752  0.52090392 0.60243371
#> 78      20 20.788283 2.7973712 -0.28179415 0.77810136
#> 79       6  5.947071 1.4323964  0.03695157 0.97052362
#> 80       3  2.855152 0.8722689  0.16605945 0.86811017
#> 81       8  7.802222 1.6768193  0.11794817 0.90610872
#> 82      13 12.749293 2.1874260  0.11461283 0.90875201
#> 83       0  1.000000       NaN         NaN        NaN
#> 84       5  4.091919 1.1317511  0.80236794 0.42234015
#> 85      19 17.696364 2.5846046  0.50438523 0.61399070
#> 86       8  7.183838 1.5998803  0.51013918 0.60995396
#> 87       5  4.091919 1.1317511  0.80236794 0.42234015
#> 88       0  1.000000       NaN         NaN        NaN
#> 89       0  1.000000       NaN         NaN        NaN
#> 90       3  3.473535 1.0106752 -0.46853368 0.63940299
#> 91       1  1.618384 0.4857831 -1.27296272 0.20303127
#> 92      10 11.512525 2.0733657 -0.72950241 0.46569439
#> 93      19 17.696364 2.5846046  0.50438523 0.61399070
#> 94       9  6.565455 1.5186493  1.60309920 0.10891276
#> 95       7  6.565455 1.5186493  0.28613944 0.77477133
#> 96       2  2.855152 0.8722689 -0.98037608 0.32690051
#> 97      19 15.841212 2.4451048  1.29188238 0.19639788
#> 98      25 21.406667 2.8373687  1.26643156 0.20535862
#> 99       6  5.947071 1.4323964  0.03695157 0.97052362
#> 100      0  1.000000       NaN         NaN        NaN
plot(lsrq, sf = coor)

# Version boots
lsrq <- local.sp.runs.test(fx = fx, listw = dis, data = coor,
                           distr ="bootstrap", nsim = 299)
#> Warning: style is M (missing); style should be set to a valid value
#> Warning: no-neighbour observations found, set zero.policy to TRUE;
#> this warning will soon become an error
#> Warning: neighbour object has 18 sub-graphs
print(lsrq)
#>     SRQ      EP.i     SdP.i zseudo.value pseudo.value
#> 1     3  2.832776 0.8184918   0.20430758   0.83811315
#> 2     5  4.043478 1.1821303   0.80915082   0.41842840
#> 3     3  3.454849 1.0461506  -0.43478395   0.66371925
#> 4     3  3.478261 1.0176442  -0.46996866   0.63837741
#> 5    15 14.545151 2.3445929   0.19399935   0.84617639
#> 6    15 14.602007 2.3513803   0.16925944   0.86559258
#> 7    24 22.602007 2.7106791   0.51573545   0.60603919
#> 8     2  2.284281 0.7208220  -0.39438440   0.69329726
#> 9     4  3.478261 1.0143413   0.51436251   0.60699856
#> 10    0  0.000000 0.0000000          NaN          NaN
#> 11   21 22.096990 2.7588706  -0.39762285   0.69090822
#> 12    0  0.000000 0.0000000          NaN          NaN
#> 13    7 10.387960 1.8957712  -1.78711431   0.07391902
#> 14    0  0.000000 0.0000000          NaN          NaN
#> 15    0  0.000000 0.0000000          NaN          NaN
#> 16    0  0.000000 0.0000000          NaN          NaN
#> 17    6  5.344482 1.3677964   0.47925143   0.63175977
#> 18    4  3.478261 1.0784788   0.48377321   0.62854683
#> 19   18 17.682274 2.4376907   0.13033883   0.89629836
#> 20    2  2.862876 0.8849562  -0.97504972   0.32953560
#> 21    3  3.401338 1.0163751  -0.39487173   0.69293755
#> 22    3  2.240803 0.7015376   1.08219044   0.27916792
#> 23   21 23.287625 2.9408396  -0.77788173   0.43663874
#> 24    9  7.187291 1.6069393   1.12805069   0.25929851
#> 25    9 10.364548 1.8710656  -0.72928948   0.46582460
#> 26    0  0.000000 0.0000000          NaN          NaN
#> 27    3  3.411371 1.0529622  -0.39067998   0.69603380
#> 28    2  2.260870 0.7086526  -0.36812052   0.71278337
#> 29    0  0.000000 0.0000000          NaN          NaN
#> 30   21 24.501672 3.2464483  -1.07861635   0.28075879
#> 31    1  2.314381 0.7291812  -1.80254408   0.07145985
#> 32    5  4.083612 1.2052871   0.76030675   0.44707125
#> 33    2  2.913043 0.8309030  -1.09885690   0.27183049
#> 34   10  9.207358 1.8182001   0.43594879   0.66287389
#> 35    3  3.458194 0.9970214  -0.45956281   0.64583006
#> 36    8  7.100334 1.5467979   0.58163096   0.56081529
#> 37    9  8.354515 1.8522808   0.34848115   0.72747887
#> 38    3  2.879599 0.8702109   0.13835881   0.88995685
#> 39    0  0.000000 0.0000000          NaN          NaN
#> 40    4  3.451505 1.0460004   0.52437358   0.60001873
#> 41    1  1.581940 0.4940671  -1.17785588   0.23885407
#> 42    7  8.989967 1.8143443  -1.09679653   0.27273035
#> 43    6  6.448161 1.5434930  -0.29035475   0.77154486
#> 44    9  8.929766 1.7887841   0.03926361   0.96868022
#> 45    3  2.260870 0.6943013   1.06456729   0.28707179
#> 46    3  2.849498 0.8557493   0.17587123   0.86039511
#> 47    8  6.451505 1.5737431   0.98395668   0.32513681
#> 48    7  7.073579 1.4998672  -0.04905674   0.96087408
#> 49    9 10.441472 1.8786381  -0.76729605   0.44290552
#> 50    8  7.655518 1.5964709   0.21577694   0.82916163
#> 51    3  3.387960 1.0083488  -0.38474769   0.70042436
#> 52    8  6.555184 1.4835106   0.97391693   0.33009778
#> 53    5  4.675585 1.2738092   0.25468078   0.79896966
#> 54   14  9.525084 1.9734495   2.26756063   0.02335600
#> 55    6  7.785953 1.7167757  -1.04029500   0.29820287
#> 56    3  2.204013 0.7248124   1.09819680   0.27211856
#> 57    5  4.030100 1.1332810   0.85583334   0.39208997
#> 58    0  0.000000 0.0000000          NaN          NaN
#> 59    0  0.000000 0.0000000          NaN          NaN
#> 60    6  5.284281 1.3669592   0.52358478   0.60056737
#> 61    7  8.227425 1.7840975  -0.68798077   0.49146489
#> 62    8  7.698997 1.5916199   0.18911760   0.85000065
#> 63    0  0.000000 0.0000000          NaN          NaN
#> 64   14 11.595318 2.0950833   1.14777407   0.25106184
#> 65   12 11.073579 2.1491229   0.43106954   0.66641781
#> 66    9 10.133779 1.9938234  -0.56864579   0.56959654
#> 67    0  0.000000 0.0000000          NaN          NaN
#> 68    6  5.247492 1.4256585   0.52783214   0.59761585
#> 69    0  0.000000 0.0000000          NaN          NaN
#> 70    3  3.438127 1.0388516  -0.42174176   0.67321352
#> 71    7  9.675585 1.7774990  -1.50525279   0.13225910
#> 72    2  3.511706 0.9774454  -1.54658843   0.12196252
#> 73    1  2.247492 0.6846486  -1.82209043   0.06844127
#> 74    3  2.789298 0.9478442   0.22229639   0.82408316
#> 75   19 16.535117 2.5372270   0.97148694   0.33130585
#> 76    7  6.525084 1.4843274   0.31995394   0.74900325
#> 77    4  3.408027 1.0933305   0.54144034   0.58820411
#> 78   20 20.729097 2.7226719  -0.26778731   0.78886304
#> 79    6  6.000000 1.5586950   0.00000000   1.00000000
#> 80    3  2.872910 0.8731079   0.14556082   0.88426810
#> 81    8  7.752508 1.6585002   0.14922617   0.88137517
#> 82   13 12.565217 2.1295920   0.20416240   0.83822659
#> 83    0  0.000000 0.0000000          NaN          NaN
#> 84    5  4.056856 1.1381627   0.82865468   0.40729984
#> 85   19 17.799331 2.4603977   0.48799790   0.62555133
#> 86    8  7.096990 1.5950714   0.56612516   0.57130870
#> 87    5  4.086957 1.2036565   0.75855816   0.44811691
#> 88    0  0.000000 0.0000000          NaN          NaN
#> 89    0  0.000000 0.0000000          NaN          NaN
#> 90    3  3.404682 1.0298130  -0.39296674   0.69434405
#> 91    1  1.638796 0.4811548  -1.32763088   0.18430008
#> 92   10 11.581940 2.0355420  -0.77715902   0.43706496
#> 93   19 17.391304 2.4475830   0.65725888   0.51101447
#> 94    9  6.461538 1.4704103   1.72636277   0.08428217
#> 95    7  6.642140 1.5508268   0.23075402   0.81750590
#> 96    2  2.842809 0.8966980  -0.93990328   0.34726717
#> 97   19 15.739130 2.5274680   1.29017244   0.19699079
#> 98   25 21.464883 2.7904326   1.26687059   0.20520157
#> 99    6  5.969900 1.3911623   0.02163682   0.98273766
#> 100   0  0.000000 0.0000000          NaN          NaN
plot(lsrq, sf = coor)


# SRQ test based on inverse distance
data("FastFood.sf")
# sf::sf_use_s2(FALSE)
n = dim(FastFood.sf)[1]
dis <- 1000000/matrix(as.numeric(
          sf::st_distance(FastFood.sf, FastFood.sf)),
          ncol = n, nrow = n)
diag(dis) <- 0
dis <- (dis < quantile(dis,.01))*dis
formula <- ~ Type
lsrq <- local.sp.runs.test(formula = formula, data = FastFood.sf, listw = dis)
#> Warning: style is M (missing); style should be set to a valid value
#> Warning: no-neighbour observations found, set zero.policy to TRUE;
#> this warning will soon become an error
#> Warning: neighbour object has 436 sub-graphs
print(lsrq)
#>     runs.i        E.i      Std.i       z.value    p.value
#> 1       16  19.004428 2.44850757 -1.227045e+00 0.21980579
#> 2       30  31.674211 3.19588410 -5.238648e-01 0.60037261
#> 3        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 4        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 5        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 6        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 7       10  11.002460 1.82503944 -5.492814e-01 0.58281238
#> 8        0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 9        2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 10       4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 11       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 12       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 13       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 14       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 15       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 16       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 17       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 18       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 19       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 20       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 21       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 22       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 23       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 24       8   9.001968 1.63237562 -6.138098e-01 0.53934104
#> 25       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 26       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 27       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 28       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 29       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 30       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 31       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 32       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 33      11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 34       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 35       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 36      14  15.003444 2.15939578 -4.646875e-01 0.64215528
#> 37       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 38       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 39      39  33.007872 3.26461537  1.835477e+00 0.06643499
#> 40       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 41       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 42       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 43       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 44       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 45       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 46       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 47       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 48       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 49       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 50       5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 51       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 52       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 53       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 54      16  17.670767 2.35608263 -7.091292e-01 0.47824433
#> 55       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 56       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 57       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 58       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 59       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 60       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 61       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 62      10   9.001968 1.63237562  6.113984e-01 0.54093584
#> 63       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 64      18  15.670275 2.21020923  1.054074e+00 0.29184882
#> 65       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 66       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 67      33  36.342026 3.43042252 -9.742315e-01 0.32994159
#> 68       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 69       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 70      94  87.021157 5.35156194  1.304076e+00 0.19220771
#> 71       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 72      21  17.670767 2.35608263  1.413038e+00 0.15764470
#> 73       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 74       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 75       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 76      32  35.008364 3.36508045 -8.939948e-01 0.37132467
#> 77      49  41.676671 3.68020424  1.989925e+00 0.04659925
#> 78       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 79       4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 80      46  37.675687 3.49454267  2.382089e+00 0.01721472
#> 81       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 82       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 83       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 84     188 177.043298 7.65503034  1.431307e+00 0.15234213
#> 85       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 86       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 87       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 88       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 89       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 90       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 91       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 92       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 93       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 94       4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 95       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 96       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 97       0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 98       2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 99       2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 100      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 101      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 102      4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 103      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 104      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 105      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 106      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 107      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 108      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 109      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 110      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 111     21  20.338090 2.53756790  2.608444e-01 0.79421249
#> 112      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 113      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 114      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 115      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 116      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 117     19  21.004920 2.58094570 -7.768161e-01 0.43726726
#> 118      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 119      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 120      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 121     29  28.340058 3.01721207  2.187259e-01 0.82686360
#> 122      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 123      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 124      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 125      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 126      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 127      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 128      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 129     86  75.685036 4.98654707  2.068559e+00 0.03858754
#> 130      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 131      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 132      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 133      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 134      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 135      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 136      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 137     25  25.672735 2.86626456 -2.347079e-01 0.81443544
#> 138      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 139      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 140      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 141      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 142      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 143      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 144      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 145      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 146     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 147     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 148     15  12.336121 1.94289607  1.371086e+00 0.17034800
#> 149      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 150     30  28.340058 3.01721207  5.501577e-01 0.58221125
#> 151     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 152      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 153      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 154      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 155      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 156      6   7.668307 1.49015700 -1.119551e+00 0.26290515
#> 157      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 158      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 159      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 160      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 161      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 162      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 163      4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 164      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 165      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 166      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 167      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 168      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 169      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 170      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 171      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 172      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 173     15  12.336121 1.94289607  1.371086e+00 0.17034800
#> 174      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 175      7   7.668307 1.49015700 -4.484808e-01 0.65380626
#> 176      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 177      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 178      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 179      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 180     16  19.004428 2.44850757 -1.227045e+00 0.21980579
#> 181      4   4.334153 1.05373221 -3.171141e-01 0.75115700
#> 182      6   7.668307 1.49015700 -1.119551e+00 0.26290515
#> 183      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 184      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 185      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 186      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 187      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 188      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 189      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 190      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 191      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 192      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 193      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 194      7   7.668307 1.49015700 -4.484808e-01 0.65380626
#> 195      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 196     10  11.002460 1.82503944 -5.492814e-01 0.58281238
#> 197      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 198      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 199     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 200      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 201      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 202     36  35.008364 3.36508045  2.946841e-01 0.76823524
#> 203      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 204      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 205      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 206      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 207     45  37.675687 3.49454267  2.095929e+00 0.03608850
#> 208      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 209      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 210      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 211      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 212      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 213      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 214     25  25.672735 2.86626456 -2.347079e-01 0.81443544
#> 215      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 216      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 217      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 218      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 219      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 220      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 221      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 222      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 223      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 224      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 225     23  19.671259 2.49343546  1.335002e+00 0.18187572
#> 226      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 227     15  15.670275 2.21020923 -3.032631e-01 0.76168938
#> 228      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 229      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 230     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 231     33  36.342026 3.43042252 -9.742315e-01 0.32994159
#> 232     13  11.669291 1.88488922  7.059880e-01 0.48019559
#> 233      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 234      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 235      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 236      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 237      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 238      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 239      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 240      6   7.668307 1.49015700 -1.119551e+00 0.26290515
#> 241      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 242      6   5.000984 1.15429461  8.654774e-01 0.38677679
#> 243      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 244    188 177.043298 7.65503034  1.431307e+00 0.15234213
#> 245     33  36.342026 3.43042252 -9.742315e-01 0.32994159
#> 246     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 247      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 248      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 249      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 250      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 251      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 252      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 253      5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 254      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 255      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 256      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 257     49  41.676671 3.68020424  1.989925e+00 0.04659925
#> 258     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 259      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 260      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 261      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 262      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 263      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 264      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 265      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 266      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 267      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 268      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 269      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 270      2   3.000492 0.81624798 -1.225721e+00 0.22030381
#> 271     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 272      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 273      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 274      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 275      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 276      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 277      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 278      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 279      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 280      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 281     24  23.005412 2.70691089  3.674254e-01 0.71330176
#> 282      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 283     15  12.336121 1.94289607  1.371086e+00 0.17034800
#> 284      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 285      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 286      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 287      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 288      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 289      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 290      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 291      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 292      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 293      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 294     16  17.670767 2.35608263 -7.091292e-01 0.47824433
#> 295      5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 296      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 297      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 298      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 299     17  15.670275 2.21020923  6.016286e-01 0.54742137
#> 300      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 301      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 302      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 303      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 304      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 305      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 306      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 307      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 308      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 309      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 310      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 311      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 312      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 313      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 314      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 315      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 316      5   5.000984 1.15429461 -8.525138e-04 0.99931979
#> 317     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 318      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 319      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 320      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 321      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 322     38  35.008364 3.36508045  8.890235e-01 0.37399046
#> 323     34  35.008364 3.36508045 -2.996554e-01 0.76444004
#> 324     33  30.340550 3.12564144  8.508494e-01 0.39485299
#> 325      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 326     26  23.672243 2.74761605  8.471915e-01 0.39688838
#> 327     36  32.341042 3.23043258  1.132653e+00 0.25736012
#> 328      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 329     24  24.339074 2.78772681 -1.216309e-01 0.90319136
#> 330      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 331     89  83.687004 5.24684304  1.012608e+00 0.31124734
#> 332      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 333      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 334      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 335      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 336      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 337     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 338      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 339      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 340     14  11.669291 1.88488922  1.236523e+00 0.21626416
#> 341     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 342      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 343      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 344      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 345      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 346      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 347      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 348      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 349      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 350      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 351     17  15.670275 2.21020923  6.016286e-01 0.54742137
#> 352     38  33.007872 3.26461537  1.529163e+00 0.12622415
#> 353      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 354     26  25.005904 2.82726846  3.516099e-01 0.72513081
#> 355     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 356      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 357      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 358     47  44.343994 3.79893944  6.991441e-01 0.48446198
#> 359     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 360      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 361      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 362      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 363      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 364      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 365      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 366      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 367      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 368      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 369      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 370      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 371      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 372      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 373      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 374      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 375      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 376      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 377      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 378      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 379      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 380      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 381      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 382      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 383      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 384      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 385      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 386      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 387      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 388      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 389      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 390      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 391      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 392      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 393      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 394      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 395      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 396      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 397      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 398      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 399      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 400      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 401      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 402     45  38.342518 3.52616541  1.888023e+00 0.05902283
#> 403      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 404     42  45.010825 3.82804764 -7.865170e-01 0.43156466
#> 405      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 406      8   9.001968 1.63237562 -6.138098e-01 0.53934104
#> 407      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 408      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 409      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 410      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 411      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 412      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 413      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 414      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 415      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 416     32  35.008364 3.36508045 -8.939948e-01 0.37132467
#> 417     36  35.008364 3.36508045  2.946841e-01 0.76823524
#> 418     31  31.674211 3.19588410 -2.109623e-01 0.83291669
#> 419      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 420      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 421      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 422      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 423      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 424      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 425      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 426      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 427      5   4.334153 1.05373221  6.318936e-01 0.52745642
#> 428     36  34.341534 3.33192879  4.977496e-01 0.61866054
#> 429      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 430     21  17.670767 2.35608263  1.413038e+00 0.15764470
#> 431     25  23.005412 2.70691089  7.368502e-01 0.46121348
#> 432      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 433      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 434      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 435      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 436      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 437      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 438     26  24.339074 2.78772681  5.957995e-01 0.55130915
#> 439      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 440      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 441      7   5.667815 1.24677180  1.068508e+00 0.28529156
#> 442      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 443      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 444      8   7.001476 1.41369228  7.063234e-01 0.47998705
#> 445      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 446      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 447      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 448     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 449      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 450      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 451      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 452      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 453      3   3.667323 0.94250012 -7.080346e-01 0.47892377
#> 454     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 455      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 456     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 457      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 458     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 459     10   7.668307 1.49015700  1.564730e+00 0.11764625
#> 460      5   5.667815 1.24677180 -5.356351e-01 0.59221077
#> 461      3   4.334153 1.05373221 -1.266122e+00 0.20546946
#> 462      9   8.335137 1.56288494  4.254072e-01 0.67053983
#> 463     20  20.338090 2.53756790 -1.332337e-01 0.89400855
#> 464     11   9.668799 1.69902630  7.835083e-01 0.43332868
#> 465     18  14.336614 2.10735730  1.738379e+00 0.08214399
#> 466     44  37.675687 3.49454267  1.809768e+00 0.07033171
#> 467     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 468     31  28.340058 3.01721207  8.815894e-01 0.37799887
#> 469     46  37.675687 3.49454267  2.382089e+00 0.01721472
#> 470      9   9.001968 1.63237562 -1.205669e-03 0.99903802
#> 471     18  19.671259 2.49343546 -6.702636e-01 0.50268980
#> 472      9   9.001968 1.63237562 -1.205669e-03 0.99903802
#> 473      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 474      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 475      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 476      7   8.335137 1.56288494 -8.542775e-01 0.39295125
#> 477      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 478      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 479      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 480      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 481      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 482      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 483      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 484      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 485      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 486      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 487      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 488      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 489      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 490      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 491      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 492      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 493      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 494      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 495      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 496      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 497      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 498      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 499      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 500      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 501      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 502      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 503      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 504      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 505      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 506      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 507      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 508      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 509      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 510      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 511      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 512      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 513      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 514      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 515      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 516      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 517      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 518      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 519      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 520      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 521      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 522      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 523      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 524      2   1.666831 0.47134650  7.068459e-01 0.47966227
#> 525      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 526      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 527      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 528      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 529      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 530      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 531      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 532      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 533      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 534      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 535      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 536      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 537      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 538      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 539      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 540      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 541      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 542      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 543      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 544      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 545      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 546      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 547      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 548      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 549      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 550      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 551      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 552      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 553      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 554      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 555      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 556      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 557      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 558     11  10.335629 1.76315909  3.768069e-01 0.70631710
#> 559      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 560      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 561      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 562      8   8.335137 1.56288494 -2.144351e-01 0.83020775
#> 563      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 564      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 565      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 566      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 567     93  87.021157 5.35156194  1.117215e+00 0.26390260
#> 568      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 569      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 570      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 571      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 572      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 573     76  73.684544 4.91932012  4.706863e-01 0.63786480
#> 574      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 575      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 576      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 577      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 578      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 579     17  17.670767 2.35608263 -2.846958e-01 0.77587719
#> 580      9  11.002460 1.82503944 -1.097215e+00 0.27254754
#> 581      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 582      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 583      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 584      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 585      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 586      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 587      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 588      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 589      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 590      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 591      4   5.667815 1.24677180 -1.337706e+00 0.18099214
#> 592      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 593      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 594      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 595      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 596      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 597      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 598      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 599      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 600      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 601      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 602      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 603      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 604      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 605      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 606      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 607      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 608      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 609      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 610      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 611      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 612      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 613      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 614      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 615     45  36.342026 3.43042252  2.523880e+00 0.01160676
#> 616      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 617      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 618      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 619      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 620      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 621      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 622      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 623      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 624      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 625      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 626     45  42.343502 3.71024441  7.159901e-01 0.47399748
#> 627      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 628      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 629      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 630      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 631      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 632      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 633      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 634      5   4.334153 1.05373221  6.318936e-01 0.52745642
#> 635      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 636      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 637      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 638      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 639      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 640      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 641     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 642      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 643      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 644     28  26.339566 2.90473707  5.716298e-01 0.56757279
#> 645      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 646      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 647      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 648      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 649      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 650      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 651      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 652      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 653      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 654      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 655      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 656      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 657      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 658      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 659      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 660      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 661      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 662      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 663      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 664      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 665      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 666      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 667     32  31.007380 3.16095794  3.140249e-01 0.75350210
#> 668      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 669      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 670      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 671      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 672     17  17.003936 2.30848272 -1.705106e-03 0.99863952
#> 673      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 674      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 675     15  19.004428 2.44850757 -1.635457e+00 0.10195333
#> 676      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 677      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 678      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 679     20  17.670767 2.35608263  9.886042e-01 0.32285684
#> 680      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 681     46  39.009348 3.55750697  1.965042e+00 0.04940935
#> 682      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 683      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 684      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 685      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 686     14  12.336121 1.94289607  8.563909e-01 0.39178159
#> 687     25  24.339074 2.78772681  2.370843e-01 0.81259136
#> 688      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 689      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 690      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 691      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 692     39  36.342026 3.43042252  7.748241e-01 0.43844358
#> 693     41  34.341534 3.33192879  1.998382e+00 0.04567527
#> 694      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 695      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 696      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 697      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 698      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 699      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 700      9   9.001968 1.63237562 -1.205669e-03 0.99903802
#> 701      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 702     75  73.684544 4.91932012  2.674061e-01 0.78915648
#> 703      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 704      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 705      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 706      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 707     17  20.338090 2.53756790 -1.315468e+00 0.18835264
#> 708      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 709      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 710      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 711      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 712      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 713      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 714      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 715     21  20.338090 2.53756790  2.608444e-01 0.79421249
#> 716      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 717      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 718    226 223.721446 8.60988206  2.646441e-01 0.79128365
#> 719     17  19.004428 2.44850757 -8.186326e-01 0.41299603
#> 720     85  77.018697 5.03086568  1.586467e+00 0.11263338
#> 721      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 722      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 723      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 724     29  25.672735 2.86626456  1.160837e+00 0.24570833
#> 725     26  25.672735 2.86626456  1.141782e-01 0.90909651
#> 726      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 727     47  44.343994 3.79893944  6.991441e-01 0.48446198
#> 728      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 729      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 730      9   9.668799 1.69902630 -3.936365e-01 0.69384942
#> 731      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 732      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 733      5   4.334153 1.05373221  6.318936e-01 0.52745642
#> 734      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 735      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 736      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 737      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 738      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 739     51  41.676671 3.68020424  2.533373e+00 0.01129708
#> 740      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 741      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 742      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 743      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 744      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 745      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 746     33  35.008364 3.36508045 -5.968251e-01 0.55062417
#> 747      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 748      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 749      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 750      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 751      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 752      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 753      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 754     32  31.674211 3.19588410  1.019402e-01 0.91880417
#> 755     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 756      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 757      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 758      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 759      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 760      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 761      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 762      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 763      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 764      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 765      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 766      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 767      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 768      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 769      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 770      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 771      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 772     18  14.336614 2.10735730  1.738379e+00 0.08214399
#> 773      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 774      7   6.334645 1.33284778  4.991977e-01 0.61764009
#> 775      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 776      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 777      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 778      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 779      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 780      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 781      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 782      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 783      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 784      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 785      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 786     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 787      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 788      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 789      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 790      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 791      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 792      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 793      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 794      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 795      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 796      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 797      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 798      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 799      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 800      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 801      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 802      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 803      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 804     36  34.341534 3.33192879  4.977496e-01 0.61866054
#> 805      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 806      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 807      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 808      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 809      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 810      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 811      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 812      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 813      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 814      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 815      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 816      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 817      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 818     23  19.671259 2.49343546  1.335002e+00 0.18187572
#> 819      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 820      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 821      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 822     10   9.668799 1.69902630  1.949359e-01 0.84544313
#> 823      1   1.666831 0.47134650 -1.414736e+00 0.15714603
#> 824      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 825      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 826      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 827      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 828      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 829      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 830      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 831      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 832      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 833      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 834      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 835      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 836      9   7.668307 1.49015700  8.936597e-01 0.37150400
#> 837      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 838      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 839     19  21.004920 2.58094570 -7.768161e-01 0.43726726
#> 840      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 841      4   5.000984 1.15429461 -8.671825e-01 0.38584204
#> 842      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 843      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 844      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 845      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 846      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 847      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 848      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 849      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 850      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 851      4   3.667323 0.94250012  3.529732e-01 0.72410852
#> 852      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 853      7   7.668307 1.49015700 -4.484808e-01 0.65380626
#> 854      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 855      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 856      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 857      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 858      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 859      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 860      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 861     27  25.005904 2.82726846  7.053082e-01 0.48061845
#> 862      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 863     25  23.672243 2.74761605  4.832397e-01 0.62892558
#> 864      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 865      6   6.334645 1.33284778 -2.510755e-01 0.80175575
#> 866      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 867      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 868      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 869      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 870      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 871     19  17.003936 2.30848272  8.646648e-01 0.38722279
#> 872      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 873      0   1.000000 0.01095397 -9.129110e+01 0.00000000
#> 874     22  20.338090 2.53756790  6.549225e-01 0.51251763
#> 875      8   7.668307 1.49015700  2.225895e-01 0.82385504
#> 876      3   3.000492 0.81624798 -6.027899e-04 0.99951904
#> 877     14  16.337106 2.25988030 -1.034172e+00 0.30105564
# plot(lsrq, sf = FastFood.sf)
# }