Skip to contents

A function to plots the m-surrounds give an object of the class m_surr obtain with the code m.surround.
The plot() function allows the user view the configuration of the m-surroundings.
The argument type select the type o visualization.
The print() print the matrix of the m-surrounding.
. The summary give information about the characteristics of the m-surroundings.
.

Usage

# S3 method for m_surr
summary(object, ...)

# S3 method for m_surr
plot(x, ..., type = 1)

# S3 method for m_surr
print(x, ...)

Arguments

object

object of class m_surr. 2 plot W matrix with network

...

further arguments passed to or from other methods.

x

object of class m_surr

type

numeric. 1 (default) to get the plot with igraph.

Value

No return value, called for side effects

References

  • Ruiz, M., López, F., and Páez, A. (2021). A test for global and local homogeneity of categorical data based on spatial runs. Working paper.

Author

Fernando Lópezfernando.lopez@upct.es
Román Mínguezroman.minguez@uclm.es
Antonio Páezpaezha@gmail.com
Manuel Ruizmanuel.ruiz@upct.es

Examples


# Example 1: Obtain m-surroundings with degree of overlapping r
N <- 100
cx <- runif(N)
cy <- runif(N)
x <- cbind(cx,cy)
m = 4
r = 2
msurr_points <- m.surround(x = x, m = m, r = r,control = list(dtmaxabs = 0.5))
#> 
#>  Threshold distance:  0.5
#>  Number of m-surroundings excluded for exceeding
#>         the threshold distance:  1 
#> 
#>  Index of spatial observations excluded:  45 
plot(msurr_points, type = 1)

plot(msurr_points, type = 2)

print(msurr_points)
#>       [,1] [,2] [,3] [,4]
#>  [1,]    1   10   64   44
#>  [2,]    2   88    9   74
#>  [3,]    3   54   13   65
#>  [4,]    5   37   21   57
#>  [5,]    6   77   97   32
#>  [6,]    7   66   62   44
#>  [7,]    8   38   91   17
#>  [8,]    9   18  100   74
#>  [9,]   13   65   96   39
#> [10,]   15   20   72   90
#> [11,]   16   48   15   43
#> [12,]   21   57   58   18
#> [13,]   22   19   67   77
#> [14,]   24   25   30   73
#> [15,]   29   11   75   46
#> [16,]   30   73   56   53
#> [17,]   32   45   82   93
#> [18,]   39   71    5   37
#> [19,]   43   50   90   35
#> [20,]   44   95   24    3
#> [21,]   49   86   87   22
#> [22,]   51   26   32   45
#> [23,]   52   92   61   23
#> [24,]   55   36   52   23
#> [25,]   56   53   83   63
#> [26,]   58   34    2   74
#> [27,]   59   28   94   14
#> [28,]   60   33   29   95
#> [29,]   61   23   89   86
#> [30,]   62   85   44   24
#> [31,]   64   84   60   95
#> [32,]   67   12   69   39
#> [33,]   69   41    3   13
#> [34,]   70   76    7   66
#> [35,]   72   47   43   90
#> [36,]   75   46   70    7
#> [37,]   78   31    6   97
#> [38,]   81   98    8   38
#> [39,]   82    4   93   99
#> [40,]   83   63   59   28
#> [41,]   87   68   22   19
#> [42,]   89   40   49   86
#> [43,]   90   35   55   61
#> [44,]   91   17   78   31
#> [45,]   94   14   16   40
#> [46,]   96   42   39   37
#> [47,]   97   27   51   32
#> [48,]  100   74   81   98

# Example 2:
data("FastFood.sf")
m = 6
r = 1
msurr_points <-  m.surround(x = FastFood.sf, m = m, r = r, distance = "Euclidean",
                            control = list(dtmaxpc = .01))
#> Warning: bounding box has potentially an invalid value range for longlat data
#> 
#>  Threshold distance:  1054.512
#>  Number of m-surroundings excluded for exceeding
#>         the threshold distance:  154 
#> 
#>  Index of spatial observations excluded:  6 12 19 25 27 29 32 36 40 46 49 55 57 58 59 60 61 63 74 75 80 83 85 86 88 89 91 100 101 102 105 110 111 112 113 118 119 120 122 123 124 125 128 131 137 138 143 144 147 150 151 155 156 157 160 164 165 168 171 173 174 2 3 5 7 8 17 20 21 22 23 24 33 34 38 51 54 62 64 65 68 69 76 77 78 98 99 103 107 109 114 115 126 132 133 135 139 140 141 149 154 159 161 162 163 167 170 172 175 9 13 16 26 31 35 37 39 41 43 47 52 56 67 70 71 73 79 92 93 106 121 134 136 153 166 4 42 53 66 72 82 84 87 90 96 142 148 18 28 30 81 108 129 152 
plot(msurr_points, type = 1)

plot(msurr_points, type = 2)
#> Warning: bounding box has potentially an invalid value range for longlat data

print(msurr_points)
#>       [,1] [,2] [,3] [,4] [,5] [,6]
#>  [1,]    1  180  675  719  471  294
#>  [2,]   39  352  693  615  402  469
#>  [3,]   40  807  745  496  592  512
#>  [4,]   63  738  612  186   53  796
#>  [5,]   74  721  751   48  165  500
#>  [6,]  208  699  601  648  824  778
#>  [7,]  209  642  397  752  509  483
#>  [8,]  221  153  477  797  584  594
#>  [9,]  226   61  122  607  617  765
#> [10,]  483  131  339  116  229   63
#> [11,]  500  764  166  559  373  310
#> [12,]  505  744   47  367  706  209
#> [13,]  529  622  412   93  248  398
#> [14,]  593   97  613  403  575  221
#> [15,]  594  105  753  396   35  208
#> [16,]  645  106  585  596  610  510
#> [17,]  657  488  133  792  489  479
#> [18,]  763  499  630  743   58   74
#> [19,]  765  849   68  152  600  763
#> [20,]  796  115  588  597  843  226
#> [21,]  832  387  654   60  757  516