Skip to contents

A function to plots the m-surrounds give an object of the class m_surr obtain with the code m.surround.
The plot() function allows the user view the configuration of the m-surroundings.
The argument type select the type o visualization.
The print() print the matrix of the m-surrounding.
. The summary give information about the characteristics of the m-surroundings.
.

Usage

# S3 method for class 'm_surr'
summary(object, ...)

# S3 method for class 'm_surr'
plot(x, ..., type = 1)

# S3 method for class 'm_surr'
print(x, ...)

Arguments

object

object of class m_surr. 2 plot W matrix with network

...

further arguments passed to or from other methods.

x

object of class m_surr

type

numeric. 1 (default) to get the plot with igraph.

Value

No return value, called for side effects

References

  • Ruiz, M., López, F., and Páez, A. (2021). A test for global and local homogeneity of categorical data based on spatial runs. Working paper.

Author

Fernando Lópezfernando.lopez@upct.es
Román Mínguezroman.minguez@uclm.es
Antonio Páezpaezha@gmail.com
Manuel Ruizmanuel.ruiz@upct.es

Examples


# Example 1: Obtain m-surroundings with degree of overlapping r
N <- 100
cx <- runif(N)
cy <- runif(N)
x <- cbind(cx,cy)
m = 4
r = 2
msurr_points <- m.surround(x = x, m = m, r = r,control = list(dtmaxabs = 0.5))
#> 
#>  Threshold distance:  0.5
#>  Number of m-surroundings excluded for exceeding
#>         the threshold distance:  2 
#> 
#>  Index of spatial observations excluded:  44 33 
plot(msurr_points, type = 1)

plot(msurr_points, type = 2)
#> Warning: style is M (missing); style should be set to a valid value
#> Warning: no-neighbour observations found, set zero.policy to TRUE;
#> this warning will soon become an error
#> Warning: neighbour object has 2 sub-graphs

print(msurr_points)
#>       [,1] [,2] [,3] [,4]
#>  [1,]    1   63   40   37
#>  [2,]    6   73   28   14
#>  [3,]    7   18   98   94
#>  [4,]    8   87   39   21
#>  [5,]    9   12   64   99
#>  [6,]   10   31   52    4
#>  [7,]   16   62    9   12
#>  [8,]   17   20   27   98
#>  [9,]   22   58   41   50
#> [10,]   23    2   85   45
#> [11,]   25   11   44    4
#> [12,]   27   55   93   47
#> [13,]   28   14    8   87
#> [14,]   32   80   48   70
#> [15,]   33   30   16   62
#> [16,]   35   84    6   66
#> [17,]   39   21   10   52
#> [18,]   40   37   59   29
#> [19,]   41   50   72   26
#> [20,]   42   61   33   99
#> [21,]   44   15   83   38
#> [22,]   48   70   60   43
#> [23,]   49   77   42   33
#> [24,]   52   36   49   77
#> [25,]   53   81   76   19
#> [26,]   54    3   57   56
#> [27,]   56   67   25   11
#> [28,]   57    5   78   51
#> [29,]   59   29   75   54
#> [30,]   60   43  100   17
#> [31,]   64   97   90   53
#> [32,]   65   95   74   51
#> [33,]   71   34   79   69
#> [34,]   72   46   35   66
#> [35,]   74   51   71   79
#> [36,]   75   86   54    3
#> [37,]   76   19    7   18
#> [38,]   78   13   56   82
#> [39,]   79   69   32   80
#> [40,]   82   88   96   91
#> [41,]   83   38   82   96
#> [42,]   85   45   22   90
#> [43,]   90   24   53   81
#> [44,]   93   47   23   19
#> [45,]   96   91   65   95
#> [46,]   98   94   89   99
#> [47,]  100   68   17   20

# Example 2:
data("FastFood.sf")
m = 6
r = 1
msurr_points <-  m.surround(x = FastFood.sf, m = m, r = r, distance = "Euclidean",
                            control = list(dtmaxpc = .2))
#> 
#>  Threshold distance:  21090.24
#>  Number of m-surroundings excluded for exceeding
#>         the threshold distance:  6 
#> 
#>  Index of spatial observations excluded:  20 141 110 64 90 111 
plot(msurr_points, type = 1)

plot(msurr_points, type = 2)
#> Warning: style is M (missing); style should be set to a valid value
#> Warning: no-neighbour observations found, set zero.policy to TRUE;
#> this warning will soon become an error
#> Warning: neighbour object has 32 sub-graphs

print(msurr_points)
#>        [,1] [,2] [,3] [,4] [,5] [,6]
#>   [1,]    1  180  675  719  471  294
#>   [2,]   10  627  865  123  262  237
#>   [3,]   12  160  495  729   18  363
#>   [4,]   14  602  552  487  305  619
#>   [5,]   16  325  637  103  515  538
#>   [6,]   17  555  156  190  837  711
#>   [7,]   23  741  640  158  709  335
#>   [8,]   32  502  167  303  383  657
#>   [9,]   33  230  337  458  786  348
#>  [10,]   39  352  693  615  402  469
#>  [11,]   40  807  745  496  592  512
#>  [12,]   52   65  520  793  274  261
#>  [13,]   55  486  628  168  272  572
#>  [14,]   63  738  612  186   53  796
#>  [15,]   74  721  751   48  165  500
#>  [16,]   78  365  668  200  857  170
#>  [17,]   79  270  688   46  144  676
#>  [18,]   81  650  791  694  362  391
#>  [19,]   83  235  665  570   90  716
#>  [20,]   95  869  289  260  395   12
#>  [21,]  100  710  364  534    8  805
#>  [22,]  102  386  253  163  553  132
#>  [23,]  107  484  497  506  795  593
#>  [24,]  110  809  490  370  238  812
#>  [25,]  111  715  463  147  454  440
#>  [26,]  117  644  202  417    2  746
#>  [27,]  132  189  873  269  264   52
#>  [28,]  134  188  722  255  623  382
#>  [29,]  136  234   87  639   28  522
#>  [30,]  137  214  725  863  687  329
#>  [31,]  141  251  450  278  119  143
#>  [32,]  142  451   27  444  452  332
#>  [33,]  143  774  344  851  291  142
#>  [34,]  151  775  286  442  459  819
#>  [35,]  155  201  811  410  276  768
#>  [36,]  157  678  330  736  523  136
#>  [37,]  170  306  241  519  376  691
#>  [38,]  173  772  465  724  326  327
#>  [39,]  178   75  243  606  408  432
#>  [40,]  179  384  815  603   30  107
#>  [41,]  194  328  149  246  282  755
#>  [42,]  199  467  232  340  730  686
#>  [43,]  208  699  601  648  824  778
#>  [44,]  209  642  397  752  509  483
#>  [45,]  210  731  181  427  227  871
#>  [46,]  213  629  547  409  172  414
#>  [47,]  221  153  477  797  584  594
#>  [48,]  224  379  380  794  518  505
#>  [49,]  226   61  122  607  617  765
#>  [50,]  231   67  804  428  692  418
#>  [51,]  237  462   62  308  406  460
#>  [52,]  250   96  806  876  498   32
#>  [53,]  261  293  705   89  779   55
#>  [54,]  263  240  563  390  742   17
#>  [55,]  267  265  643  521  312  782
#>  [56,]  273  401  726  697  366  347
#>  [57,]  275  543  858  683  268  110
#>  [58,]  287  577  566  590  249  540
#>  [59,]  294  707  700  470  839  117
#>  [60,]  310  827  501  759  760  645
#>  [61,]  321  735  169  571  389   95
#>  [62,]  327  466   80  207  681  754
#>  [63,]  332  713   50  316  732  453
#>  [64,]  335  801  749  545  856  287
#>  [65,]  338   26  457  712  191  785
#>  [66,]  341  734  359  441  456  355
#>  [67,]  347  217   69  526  413  531
#>  [68,]  348  449  112  445  666  194
#>  [69,]  350   88  872  280  120  714
#>  [70,]  353    4   66  236  407  717
#>  [71,]  355  258  698  455  176  151
#>  [72,]  360  614  524  218   29  631
#>  [73,]  363   13  508  840  161  517
#>  [74,]  382  318  434  776  802  854
#>  [75,]  391  790  315  424  334  426
#>  [76,]  398  661   42  233  541  798
#>  [77,]  414  670  301  557   15  780
#>  [78,]  418  472   24  558  562  263
#>  [79,]  421  816  349   20  689  625
#>  [80,]  422    9  662  356  309  771
#>  [81,]  425  850  756  247  400  422
#>  [82,]  426  747   73  252  140  421
#>  [83,]  431   54  579  877  702  573
#>  [84,]  432  223   11  581  419  777
#>  [85,]  440  664  175  852  703  875
#>  [86,]  453  528  378   43  279   33
#>  [87,]  460    7  580  196   94  431
#>  [88,]  479   31  346   41  847  480
#>  [89,]  480  808  388   38  304  481
#>  [90,]  481  482  762  684  826  860
#>  [91,]  483  131  339  116  229   63
#>  [92,]  500  764  166  559  373  310
#>  [93,]  503   51  393  870  504  321
#>  [94,]  505  744   47  367  706  209
#>  [95,]  510  750  285  737  507  250
#>  [96,]  512  511  766  862   57  224
#>  [97,]  514  608  130  842  513   40
#>  [98,]  516    3  660  845  550   16
#>  [99,]  517  728  159  533  544  635
#> [100,]  522  867  342  848  846  773
#> [101,]  529  622  412   93  248  398
#> [102,]  531  784  527  377  177  633
#> [103,]  538  682  369   19  546  574
#> [104,]  540  833  535  211  589  799
#> [105,]  564  813   86  187  651   78
#> [106,]  569  113  198  656  127  598
#> [107,]  574  723  385  708  228  100
#> [108,]  576   22  374  561    6  646
#> [109,]  583  298  599  853  290  770
#> [110,]  586   56  493  492   71  859
#> [111,]  593   97  613  403  575  221
#> [112,]  594  105  753  396   35  208
#> [113,]  598  183  636  604  109   83
#> [114,]  609  435  767   25  197  353
#> [115,]  611  242  696  476  182  609
#> [116,]  619  372  411  203  647  586
#> [117,]  625  420  205  663  333  350
#> [118,]  631   49  296  653  690  866
#> [119,]  632  836  212  560  761  102
#> [120,]  633  361   37  838  525  529
#> [121,]  635  491  658  834  256  275
#> [122,]  645  106  585  596  610  510
#> [123,]  646  254  192  277  437  583
#> [124,]  649  621   85  415  371  831
#> [125,]  657  488  133  792  489  479
#> [126,]  676  787  145   98  820   81
#> [127,]  677  311  108  781  551  576
#> [128,]  679   72  121  667  874  137
#> [129,]  686  283  148   36  672  173
#> [130,]  691  548  295  841  118   14
#> [131,]  704  114  473  669  605  178
#> [132,]  711  216  185  164  740  213
#> [133,]  714  336  433  701   44  273
#> [134,]  716  204  154  828  624  829
#> [135,]  717  319   21  436  128  677
#> [136,]  746  323   76  416  245  231
#> [137,]  754  468  150  324  626  111
#> [138,]  755  464  641  822  271  199
#> [139,]  763  499  630  743   58   74
#> [140,]  765  849   68  152  600  763
#> [141,]  768    5  532  810  368  134
#> [142,]  770  101  554  381  307  632
#> [143,]  771   99  138  817  394  788
#> [144,]  773   45  193  443  673  360
#> [145,]  777  300  595  461  591   10
#> [146,]  778  478  314  659  823  825
#> [147,]  780  375  239  206  184  814
#> [148,]  782  162  104  297  783  157
#> [149,]  785  821  392  195  266  141
#> [150,]  788  343  284  139  423  210
#> [151,]  789  818  225  685  174   91
#> [152,]  796  115  588  597  843  226
#> [153,]  798  345  568   59  864  569
#> [154,]  799  652  674  126  769  832
#> [155,]  803  357  475  399  125  704
#> [156,]  805  537  313  835  536  649
#> [157,]  812   34  135  582  844  514
#> [158,]  814  556  549  302  171  564
#> [159,]  819  638  259  634  733   79
#> [160,]  825  618  695  215  578  503
#> [161,]  829  565   82  830  542   23
#> [162,]  831  539  855  320  758  155
#> [163,]  832  387  654   60  757  516
#> [164,]  854  288  222  124  474  803
#> [165,]  859  868  620  485  292  179
#> [166,]  860  429  530  680  220  267
#> [167,]  866  671  439  446  748  338
#> [168,]  871   64  351  299  430  679
#> [169,]  875  448  146  447  317  341